Metamath Proof Explorer


Theorem ixxlb

Description: Extract the lower bound of an interval. (Contributed by Mario Carneiro, 17-Jun-2014) (Revised by AV, 12-Sep-2020)

Ref Expression
Hypotheses ixx.1 O = x * , y * z * | x R z z S y
ixxub.2 w * B * w < B w S B
ixxub.3 w * B * w S B w B
ixxub.4 A * w * A < w A R w
ixxub.5 A * w * A R w A w
Assertion ixxlb A * B * A O B sup A O B * < = A

Proof

Step Hyp Ref Expression
1 ixx.1 O = x * , y * z * | x R z z S y
2 ixxub.2 w * B * w < B w S B
3 ixxub.3 w * B * w S B w B
4 ixxub.4 A * w * A < w A R w
5 ixxub.5 A * w * A R w A w
6 1 elixx1 A * B * w A O B w * A R w w S B
7 6 3adant3 A * B * A O B w A O B w * A R w w S B
8 7 biimpa A * B * A O B w A O B w * A R w w S B
9 8 simp1d A * B * A O B w A O B w *
10 9 ex A * B * A O B w A O B w *
11 10 ssrdv A * B * A O B A O B *
12 infxrcl A O B * sup A O B * < *
13 11 12 syl A * B * A O B sup A O B * < *
14 simp1 A * B * A O B A *
15 simprr A * B * A O B w A < w w < sup A O B * < w < sup A O B * <
16 11 ad2antrr A * B * A O B w A < w w < sup A O B * < A O B *
17 qre w w
18 17 rexrd w w *
19 18 ad2antlr A * B * A O B w A < w w < sup A O B * < w *
20 simprl A * B * A O B w A < w w < sup A O B * < A < w
21 14 ad2antrr A * B * A O B w A < w w < sup A O B * < A *
22 21 19 4 syl2anc A * B * A O B w A < w w < sup A O B * < A < w A R w
23 20 22 mpd A * B * A O B w A < w w < sup A O B * < A R w
24 13 ad2antrr A * B * A O B w A < w w < sup A O B * < sup A O B * < *
25 simpll2 A * B * A O B w A < w w < sup A O B * < B *
26 simp3 A * B * A O B A O B
27 n0 A O B w w A O B
28 26 27 sylib A * B * A O B w w A O B
29 13 adantr A * B * A O B w A O B sup A O B * < *
30 simpl2 A * B * A O B w A O B B *
31 infxrlb A O B * w A O B sup A O B * < w
32 11 31 sylan A * B * A O B w A O B sup A O B * < w
33 8 simp3d A * B * A O B w A O B w S B
34 9 30 3 syl2anc A * B * A O B w A O B w S B w B
35 33 34 mpd A * B * A O B w A O B w B
36 29 9 30 32 35 xrletrd A * B * A O B w A O B sup A O B * < B
37 28 36 exlimddv A * B * A O B sup A O B * < B
38 37 ad2antrr A * B * A O B w A < w w < sup A O B * < sup A O B * < B
39 19 24 25 15 38 xrltletrd A * B * A O B w A < w w < sup A O B * < w < B
40 19 25 2 syl2anc A * B * A O B w A < w w < sup A O B * < w < B w S B
41 39 40 mpd A * B * A O B w A < w w < sup A O B * < w S B
42 7 ad2antrr A * B * A O B w A < w w < sup A O B * < w A O B w * A R w w S B
43 19 23 41 42 mpbir3and A * B * A O B w A < w w < sup A O B * < w A O B
44 16 43 31 syl2anc A * B * A O B w A < w w < sup A O B * < sup A O B * < w
45 24 19 xrlenltd A * B * A O B w A < w w < sup A O B * < sup A O B * < w ¬ w < sup A O B * <
46 44 45 mpbid A * B * A O B w A < w w < sup A O B * < ¬ w < sup A O B * <
47 15 46 pm2.65da A * B * A O B w ¬ A < w w < sup A O B * <
48 47 nrexdv A * B * A O B ¬ w A < w w < sup A O B * <
49 qbtwnxr A * sup A O B * < * A < sup A O B * < w A < w w < sup A O B * <
50 49 3expia A * sup A O B * < * A < sup A O B * < w A < w w < sup A O B * <
51 14 13 50 syl2anc A * B * A O B A < sup A O B * < w A < w w < sup A O B * <
52 48 51 mtod A * B * A O B ¬ A < sup A O B * <
53 13 14 52 xrnltled A * B * A O B sup A O B * < A
54 8 simp2d A * B * A O B w A O B A R w
55 14 adantr A * B * A O B w A O B A *
56 55 9 5 syl2anc A * B * A O B w A O B A R w A w
57 54 56 mpd A * B * A O B w A O B A w
58 57 ralrimiva A * B * A O B w A O B A w
59 infxrgelb A O B * A * A sup A O B * < w A O B A w
60 11 14 59 syl2anc A * B * A O B A sup A O B * < w A O B A w
61 58 60 mpbird A * B * A O B A sup A O B * <
62 13 14 53 61 xrletrid A * B * A O B sup A O B * < = A