Metamath Proof Explorer


Theorem iotasbc

Description: Definition *14.01 in WhiteheadRussell p. 184. In Principia Mathematica, Russell and Whitehead define iota in terms of a function of ( iota x ph ) . Their definition differs in that a function of ( iota x ph ) evaluates to "false" when there isn't a single x that satisfies ph . (Contributed by Andrew Salmon, 11-Jul-2011)

Ref Expression
Assertion iotasbc ∃!xφ[˙ιx|φ/y]˙ψyxφx=yψ

Proof

Step Hyp Ref Expression
1 sbc5 [˙ιx|φ/y]˙ψyy=ιx|φψ
2 iotaexeu ∃!xφιx|φV
3 eueq ιx|φV∃!yy=ιx|φ
4 2 3 sylib ∃!xφ∃!yy=ιx|φ
5 eu6 ∃!xφyxφx=y
6 iotaval xφx=yιx|φ=y
7 6 eqcomd xφx=yy=ιx|φ
8 7 ancri xφx=yy=ιx|φxφx=y
9 8 eximi yxφx=yyy=ιx|φxφx=y
10 5 9 sylbi ∃!xφyy=ιx|φxφx=y
11 eupick ∃!yy=ιx|φyy=ιx|φxφx=yy=ιx|φxφx=y
12 4 10 11 syl2anc ∃!xφy=ιx|φxφx=y
13 12 7 impbid1 ∃!xφy=ιx|φxφx=y
14 13 anbi1d ∃!xφy=ιx|φψxφx=yψ
15 14 exbidv ∃!xφyy=ιx|φψyxφx=yψ
16 1 15 bitrid ∃!xφ[˙ιx|φ/y]˙ψyxφx=yψ