Description: Definition *14.01 in WhiteheadRussell p. 184. In Principia Mathematica, Russell and Whitehead define iota in terms of a function of ( iota x ph ) . Their definition differs in that a function of ( iota x ph ) evaluates to "false" when there isn't a single x that satisfies ph . (Contributed by Andrew Salmon, 11-Jul-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | iotasbc | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbc5 | |
|
2 | iotaexeu | |
|
3 | eueq | |
|
4 | 2 3 | sylib | |
5 | eu6 | |
|
6 | iotaval | |
|
7 | 6 | eqcomd | |
8 | 7 | ancri | |
9 | 8 | eximi | |
10 | 5 9 | sylbi | |
11 | eupick | |
|
12 | 4 10 11 | syl2anc | |
13 | 12 7 | impbid1 | |
14 | 13 | anbi1d | |
15 | 14 | exbidv | |
16 | 1 15 | bitrid | |