Metamath Proof Explorer


Theorem isfne4

Description: The predicate " B is finer than A " in terms of the topology generation function. (Contributed by Mario Carneiro, 11-Sep-2015)

Ref Expression
Hypotheses isfne.1 X = A
isfne.2 Y = B
Assertion isfne4 A Fne B X = Y A topGen B

Proof

Step Hyp Ref Expression
1 isfne.1 X = A
2 isfne.2 Y = B
3 fnerel Rel Fne
4 3 brrelex2i A Fne B B V
5 simpl X = Y A topGen B X = Y
6 5 1 2 3eqtr3g X = Y A topGen B A = B
7 fvex topGen B V
8 7 ssex A topGen B A V
9 8 adantl X = Y A topGen B A V
10 9 uniexd X = Y A topGen B A V
11 6 10 eqeltrrd X = Y A topGen B B V
12 uniexb B V B V
13 11 12 sylibr X = Y A topGen B B V
14 1 2 isfne B V A Fne B X = Y x A x B 𝒫 x
15 dfss3 A topGen B x A x topGen B
16 eltg B V x topGen B x B 𝒫 x
17 16 ralbidv B V x A x topGen B x A x B 𝒫 x
18 15 17 syl5bb B V A topGen B x A x B 𝒫 x
19 18 anbi2d B V X = Y A topGen B X = Y x A x B 𝒫 x
20 14 19 bitr4d B V A Fne B X = Y A topGen B
21 4 13 20 pm5.21nii A Fne B X = Y A topGen B