Metamath Proof Explorer


Theorem isfrgr

Description: The property of being a friendship graph. (Contributed by Alexander van der Vekens, 4-Oct-2017) (Revised by AV, 29-Mar-2021) (Revised by AV, 3-Jan-2024)

Ref Expression
Hypotheses isfrgr.v V=VtxG
isfrgr.e E=EdgG
Assertion isfrgr GFriendGraphGUSGraphkVlVk∃!xVxkxlE

Proof

Step Hyp Ref Expression
1 isfrgr.v V=VtxG
2 isfrgr.e E=EdgG
3 fvex VtxgV
4 fvex EdggV
5 fveq2 g=GVtxg=VtxG
6 5 eqeq2d g=Gv=Vtxgv=VtxG
7 1 eqcomi VtxG=V
8 7 eqeq2i v=VtxGv=V
9 6 8 bitrdi g=Gv=Vtxgv=V
10 fveq2 g=GEdgg=EdgG
11 10 eqeq2d g=Ge=Edgge=EdgG
12 2 eqcomi EdgG=E
13 12 eqeq2i e=EdgGe=E
14 11 13 bitrdi g=Ge=Edgge=E
15 9 14 anbi12d g=Gv=Vtxge=Edggv=Ve=E
16 simpl v=Ve=Ev=V
17 difeq1 v=Vvk=Vk
18 17 adantr v=Ve=Evk=Vk
19 reueq1 v=V∃!xvxkxle∃!xVxkxle
20 19 adantr v=Ve=E∃!xvxkxle∃!xVxkxle
21 sseq2 e=ExkxlexkxlE
22 21 adantl v=Ve=ExkxlexkxlE
23 22 reubidv v=Ve=E∃!xVxkxle∃!xVxkxlE
24 20 23 bitrd v=Ve=E∃!xvxkxle∃!xVxkxlE
25 18 24 raleqbidv v=Ve=Elvk∃!xvxkxlelVk∃!xVxkxlE
26 16 25 raleqbidv v=Ve=Ekvlvk∃!xvxkxlekVlVk∃!xVxkxlE
27 15 26 syl6bi g=Gv=Vtxge=Edggkvlvk∃!xvxkxlekVlVk∃!xVxkxlE
28 3 4 27 sbc2iedv g=G[˙Vtxg/v]˙[˙Edgg/e]˙kvlvk∃!xvxkxlekVlVk∃!xVxkxlE
29 df-frgr FriendGraph=gUSGraph|[˙Vtxg/v]˙[˙Edgg/e]˙kvlvk∃!xvxkxle
30 28 29 elrab2 GFriendGraphGUSGraphkVlVk∃!xVxkxlE