Metamath Proof Explorer


Theorem isgrpinv

Description: Properties showing that a function M is the inverse function of a group. (Contributed by NM, 7-Aug-2013) (Revised by Mario Carneiro, 2-Oct-2015)

Ref Expression
Hypotheses grpinv.b B = Base G
grpinv.p + ˙ = + G
grpinv.u 0 ˙ = 0 G
grpinv.n N = inv g G
Assertion isgrpinv G Grp M : B B x B M x + ˙ x = 0 ˙ N = M

Proof

Step Hyp Ref Expression
1 grpinv.b B = Base G
2 grpinv.p + ˙ = + G
3 grpinv.u 0 ˙ = 0 G
4 grpinv.n N = inv g G
5 1 2 3 4 grpinvval x B N x = ι e B | e + ˙ x = 0 ˙
6 5 ad2antlr G Grp M : B B x B M x + ˙ x = 0 ˙ N x = ι e B | e + ˙ x = 0 ˙
7 simpr G Grp M : B B x B M x + ˙ x = 0 ˙ M x + ˙ x = 0 ˙
8 simpllr G Grp M : B B x B M x + ˙ x = 0 ˙ M : B B
9 simplr G Grp M : B B x B M x + ˙ x = 0 ˙ x B
10 8 9 ffvelrnd G Grp M : B B x B M x + ˙ x = 0 ˙ M x B
11 1 2 3 grpinveu G Grp x B ∃! e B e + ˙ x = 0 ˙
12 11 ad4ant13 G Grp M : B B x B M x + ˙ x = 0 ˙ ∃! e B e + ˙ x = 0 ˙
13 oveq1 e = M x e + ˙ x = M x + ˙ x
14 13 eqeq1d e = M x e + ˙ x = 0 ˙ M x + ˙ x = 0 ˙
15 14 riota2 M x B ∃! e B e + ˙ x = 0 ˙ M x + ˙ x = 0 ˙ ι e B | e + ˙ x = 0 ˙ = M x
16 10 12 15 syl2anc G Grp M : B B x B M x + ˙ x = 0 ˙ M x + ˙ x = 0 ˙ ι e B | e + ˙ x = 0 ˙ = M x
17 7 16 mpbid G Grp M : B B x B M x + ˙ x = 0 ˙ ι e B | e + ˙ x = 0 ˙ = M x
18 6 17 eqtrd G Grp M : B B x B M x + ˙ x = 0 ˙ N x = M x
19 18 ex G Grp M : B B x B M x + ˙ x = 0 ˙ N x = M x
20 19 ralimdva G Grp M : B B x B M x + ˙ x = 0 ˙ x B N x = M x
21 20 impr G Grp M : B B x B M x + ˙ x = 0 ˙ x B N x = M x
22 1 4 grpinvfn N Fn B
23 ffn M : B B M Fn B
24 23 ad2antrl G Grp M : B B x B M x + ˙ x = 0 ˙ M Fn B
25 eqfnfv N Fn B M Fn B N = M x B N x = M x
26 22 24 25 sylancr G Grp M : B B x B M x + ˙ x = 0 ˙ N = M x B N x = M x
27 21 26 mpbird G Grp M : B B x B M x + ˙ x = 0 ˙ N = M
28 27 ex G Grp M : B B x B M x + ˙ x = 0 ˙ N = M
29 1 4 grpinvf G Grp N : B B
30 1 2 3 4 grplinv G Grp x B N x + ˙ x = 0 ˙
31 30 ralrimiva G Grp x B N x + ˙ x = 0 ˙
32 29 31 jca G Grp N : B B x B N x + ˙ x = 0 ˙
33 feq1 N = M N : B B M : B B
34 fveq1 N = M N x = M x
35 34 oveq1d N = M N x + ˙ x = M x + ˙ x
36 35 eqeq1d N = M N x + ˙ x = 0 ˙ M x + ˙ x = 0 ˙
37 36 ralbidv N = M x B N x + ˙ x = 0 ˙ x B M x + ˙ x = 0 ˙
38 33 37 anbi12d N = M N : B B x B N x + ˙ x = 0 ˙ M : B B x B M x + ˙ x = 0 ˙
39 32 38 syl5ibcom G Grp N = M M : B B x B M x + ˙ x = 0 ˙
40 28 39 impbid G Grp M : B B x B M x + ˙ x = 0 ˙ N = M