Description: An infinite set contains subsets equinumerous to every finite set. Extension of isinf from finite ordinals to all finite sets. (Contributed by Stefan O'Rear, 8-Oct-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | isinffi | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ficardom | |
|
2 | isinf | |
|
3 | breq2 | |
|
4 | 3 | anbi2d | |
5 | 4 | exbidv | |
6 | 5 | rspcva | |
7 | 1 2 6 | syl2anr | |
8 | simprr | |
|
9 | ficardid | |
|
10 | 9 | ad2antlr | |
11 | entr | |
|
12 | 8 10 11 | syl2anc | |
13 | 12 | ensymd | |
14 | bren | |
|
15 | 13 14 | sylib | |
16 | f1of1 | |
|
17 | simplrl | |
|
18 | f1ss | |
|
19 | 16 17 18 | syl2an2 | |
20 | 19 | ex | |
21 | 20 | eximdv | |
22 | 15 21 | mpd | |
23 | 7 22 | exlimddv | |