Metamath Proof Explorer


Theorem isinffi

Description: An infinite set contains subsets equinumerous to every finite set. Extension of isinf from finite ordinals to all finite sets. (Contributed by Stefan O'Rear, 8-Oct-2014)

Ref Expression
Assertion isinffi ¬AFinBFinff:B1-1A

Proof

Step Hyp Ref Expression
1 ficardom BFincardBω
2 isinf ¬AFinaωccAca
3 breq2 a=cardBcaccardB
4 3 anbi2d a=cardBcAcacAccardB
5 4 exbidv a=cardBccAcaccAccardB
6 5 rspcva cardBωaωccAcaccAccardB
7 1 2 6 syl2anr ¬AFinBFinccAccardB
8 simprr ¬AFinBFincAccardBccardB
9 ficardid BFincardBB
10 9 ad2antlr ¬AFinBFincAccardBcardBB
11 entr ccardBcardBBcB
12 8 10 11 syl2anc ¬AFinBFincAccardBcB
13 12 ensymd ¬AFinBFincAccardBBc
14 bren Bcff:B1-1 ontoc
15 13 14 sylib ¬AFinBFincAccardBff:B1-1 ontoc
16 f1of1 f:B1-1 ontocf:B1-1c
17 simplrl ¬AFinBFincAccardBf:B1-1 ontoccA
18 f1ss f:B1-1ccAf:B1-1A
19 16 17 18 syl2an2 ¬AFinBFincAccardBf:B1-1 ontocf:B1-1A
20 19 ex ¬AFinBFincAccardBf:B1-1 ontocf:B1-1A
21 20 eximdv ¬AFinBFincAccardBff:B1-1 ontocff:B1-1A
22 15 21 mpd ¬AFinBFincAccardBff:B1-1A
23 7 22 exlimddv ¬AFinBFinff:B1-1A