Metamath Proof Explorer


Theorem isirred

Description: An irreducible element of a ring is a non-unit that is not the product of two non-units. (Contributed by Mario Carneiro, 4-Dec-2014)

Ref Expression
Hypotheses irred.1 B = Base R
irred.2 U = Unit R
irred.3 I = Irred R
irred.4 N = B U
irred.5 · ˙ = R
Assertion isirred X I X N x N y N x · ˙ y X

Proof

Step Hyp Ref Expression
1 irred.1 B = Base R
2 irred.2 U = Unit R
3 irred.3 I = Irred R
4 irred.4 N = B U
5 irred.5 · ˙ = R
6 elfvdm X Irred R R dom Irred
7 6 3 eleq2s X I R dom Irred
8 7 elexd X I R V
9 eldifi X B U X B
10 9 4 eleq2s X N X B
11 10 1 eleqtrdi X N X Base R
12 11 elfvexd X N R V
13 12 adantr X N x N y N x · ˙ y X R V
14 fvex Base r V
15 difexg Base r V Base r Unit r V
16 14 15 mp1i r = R Base r Unit r V
17 simpr r = R b = Base r Unit r b = Base r Unit r
18 simpl r = R b = Base r Unit r r = R
19 18 fveq2d r = R b = Base r Unit r Base r = Base R
20 19 1 syl6eqr r = R b = Base r Unit r Base r = B
21 18 fveq2d r = R b = Base r Unit r Unit r = Unit R
22 21 2 syl6eqr r = R b = Base r Unit r Unit r = U
23 20 22 difeq12d r = R b = Base r Unit r Base r Unit r = B U
24 23 4 syl6eqr r = R b = Base r Unit r Base r Unit r = N
25 17 24 eqtrd r = R b = Base r Unit r b = N
26 18 fveq2d r = R b = Base r Unit r r = R
27 26 5 syl6eqr r = R b = Base r Unit r r = · ˙
28 27 oveqd r = R b = Base r Unit r x r y = x · ˙ y
29 28 neeq1d r = R b = Base r Unit r x r y z x · ˙ y z
30 25 29 raleqbidv r = R b = Base r Unit r y b x r y z y N x · ˙ y z
31 25 30 raleqbidv r = R b = Base r Unit r x b y b x r y z x N y N x · ˙ y z
32 25 31 rabeqbidv r = R b = Base r Unit r z b | x b y b x r y z = z N | x N y N x · ˙ y z
33 16 32 csbied r = R Base r Unit r / b z b | x b y b x r y z = z N | x N y N x · ˙ y z
34 df-irred Irred = r V Base r Unit r / b z b | x b y b x r y z
35 fvex Base R V
36 1 35 eqeltri B V
37 36 difexi B U V
38 4 37 eqeltri N V
39 38 rabex z N | x N y N x · ˙ y z V
40 33 34 39 fvmpt R V Irred R = z N | x N y N x · ˙ y z
41 3 40 syl5eq R V I = z N | x N y N x · ˙ y z
42 41 eleq2d R V X I X z N | x N y N x · ˙ y z
43 neeq2 z = X x · ˙ y z x · ˙ y X
44 43 2ralbidv z = X x N y N x · ˙ y z x N y N x · ˙ y X
45 44 elrab X z N | x N y N x · ˙ y z X N x N y N x · ˙ y X
46 42 45 syl6bb R V X I X N x N y N x · ˙ y X
47 8 13 46 pm5.21nii X I X N x N y N x · ˙ y X