Metamath Proof Explorer


Theorem isirred

Description: An irreducible element of a ring is a non-unit that is not the product of two non-units. (Contributed by Mario Carneiro, 4-Dec-2014)

Ref Expression
Hypotheses irred.1 B=BaseR
irred.2 U=UnitR
irred.3 I=IrredR
irred.4 N=BU
irred.5 ·˙=R
Assertion isirred XIXNxNyNx·˙yX

Proof

Step Hyp Ref Expression
1 irred.1 B=BaseR
2 irred.2 U=UnitR
3 irred.3 I=IrredR
4 irred.4 N=BU
5 irred.5 ·˙=R
6 elfvdm XIrredRRdomIrred
7 6 3 eleq2s XIRdomIrred
8 7 elexd XIRV
9 eldifi XBUXB
10 9 4 eleq2s XNXB
11 10 1 eleqtrdi XNXBaseR
12 11 elfvexd XNRV
13 12 adantr XNxNyNx·˙yXRV
14 fvex BaserV
15 difexg BaserVBaserUnitrV
16 14 15 mp1i r=RBaserUnitrV
17 simpr r=Rb=BaserUnitrb=BaserUnitr
18 simpl r=Rb=BaserUnitrr=R
19 18 fveq2d r=Rb=BaserUnitrBaser=BaseR
20 19 1 eqtr4di r=Rb=BaserUnitrBaser=B
21 18 fveq2d r=Rb=BaserUnitrUnitr=UnitR
22 21 2 eqtr4di r=Rb=BaserUnitrUnitr=U
23 20 22 difeq12d r=Rb=BaserUnitrBaserUnitr=BU
24 23 4 eqtr4di r=Rb=BaserUnitrBaserUnitr=N
25 17 24 eqtrd r=Rb=BaserUnitrb=N
26 18 fveq2d r=Rb=BaserUnitrr=R
27 26 5 eqtr4di r=Rb=BaserUnitrr=·˙
28 27 oveqd r=Rb=BaserUnitrxry=x·˙y
29 28 neeq1d r=Rb=BaserUnitrxryzx·˙yz
30 25 29 raleqbidv r=Rb=BaserUnitrybxryzyNx·˙yz
31 25 30 raleqbidv r=Rb=BaserUnitrxbybxryzxNyNx·˙yz
32 25 31 rabeqbidv r=Rb=BaserUnitrzb|xbybxryz=zN|xNyNx·˙yz
33 16 32 csbied r=RBaserUnitr/bzb|xbybxryz=zN|xNyNx·˙yz
34 df-irred Irred=rVBaserUnitr/bzb|xbybxryz
35 fvex BaseRV
36 1 35 eqeltri BV
37 36 difexi BUV
38 4 37 eqeltri NV
39 38 rabex zN|xNyNx·˙yzV
40 33 34 39 fvmpt RVIrredR=zN|xNyNx·˙yz
41 3 40 eqtrid RVI=zN|xNyNx·˙yz
42 41 eleq2d RVXIXzN|xNyNx·˙yz
43 neeq2 z=Xx·˙yzx·˙yX
44 43 2ralbidv z=XxNyNx·˙yzxNyNx·˙yX
45 44 elrab XzN|xNyNx·˙yzXNxNyNx·˙yX
46 42 45 bitrdi RVXIXNxNyNx·˙yX
47 8 13 46 pm5.21nii XIXNxNyNx·˙yX