Description: An irreducible element of a ring is a non-unit that is not the product of two non-units. (Contributed by Mario Carneiro, 4-Dec-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | irred.1 | |
|
irred.2 | |
||
irred.3 | |
||
irred.4 | |
||
irred.5 | |
||
Assertion | isirred | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | irred.1 | |
|
2 | irred.2 | |
|
3 | irred.3 | |
|
4 | irred.4 | |
|
5 | irred.5 | |
|
6 | elfvdm | |
|
7 | 6 3 | eleq2s | |
8 | 7 | elexd | |
9 | eldifi | |
|
10 | 9 4 | eleq2s | |
11 | 10 1 | eleqtrdi | |
12 | 11 | elfvexd | |
13 | 12 | adantr | |
14 | fvex | |
|
15 | difexg | |
|
16 | 14 15 | mp1i | |
17 | simpr | |
|
18 | simpl | |
|
19 | 18 | fveq2d | |
20 | 19 1 | eqtr4di | |
21 | 18 | fveq2d | |
22 | 21 2 | eqtr4di | |
23 | 20 22 | difeq12d | |
24 | 23 4 | eqtr4di | |
25 | 17 24 | eqtrd | |
26 | 18 | fveq2d | |
27 | 26 5 | eqtr4di | |
28 | 27 | oveqd | |
29 | 28 | neeq1d | |
30 | 25 29 | raleqbidv | |
31 | 25 30 | raleqbidv | |
32 | 25 31 | rabeqbidv | |
33 | 16 32 | csbied | |
34 | df-irred | |
|
35 | fvex | |
|
36 | 1 35 | eqeltri | |
37 | 36 | difexi | |
38 | 4 37 | eqeltri | |
39 | 38 | rabex | |
40 | 33 34 39 | fvmpt | |
41 | 3 40 | eqtrid | |
42 | 41 | eleq2d | |
43 | neeq2 | |
|
44 | 43 | 2ralbidv | |
45 | 44 | elrab | |
46 | 42 45 | bitrdi | |
47 | 8 13 46 | pm5.21nii | |