Metamath Proof Explorer


Theorem islindeps

Description: The property of being a linearly dependent subset. (Contributed by AV, 26-Apr-2019) (Revised by AV, 30-Jul-2019)

Ref Expression
Hypotheses islindeps.b B=BaseM
islindeps.z Z=0M
islindeps.r R=ScalarM
islindeps.e E=BaseR
islindeps.0 0˙=0R
Assertion islindeps MWS𝒫BSlinDepSMfESfinSupp0˙fflinCMS=ZxSfx0˙

Proof

Step Hyp Ref Expression
1 islindeps.b B=BaseM
2 islindeps.z Z=0M
3 islindeps.r R=ScalarM
4 islindeps.e E=BaseR
5 islindeps.0 0˙=0R
6 lindepsnlininds S𝒫BMWSlinDepSM¬SlinIndSM
7 6 ancoms MWS𝒫BSlinDepSM¬SlinIndSM
8 1 2 3 4 5 islininds S𝒫BMWSlinIndSMS𝒫BfESfinSupp0˙fflinCMS=ZxSfx=0˙
9 8 ancoms MWS𝒫BSlinIndSMS𝒫BfESfinSupp0˙fflinCMS=ZxSfx=0˙
10 ibar S𝒫BfESfinSupp0˙fflinCMS=ZxSfx=0˙S𝒫BfESfinSupp0˙fflinCMS=ZxSfx=0˙
11 10 bicomd S𝒫BS𝒫BfESfinSupp0˙fflinCMS=ZxSfx=0˙fESfinSupp0˙fflinCMS=ZxSfx=0˙
12 11 adantl MWS𝒫BS𝒫BfESfinSupp0˙fflinCMS=ZxSfx=0˙fESfinSupp0˙fflinCMS=ZxSfx=0˙
13 9 12 bitrd MWS𝒫BSlinIndSMfESfinSupp0˙fflinCMS=ZxSfx=0˙
14 13 notbid MWS𝒫B¬SlinIndSM¬fESfinSupp0˙fflinCMS=ZxSfx=0˙
15 rexnal fES¬finSupp0˙fflinCMS=ZxSfx=0˙¬fESfinSupp0˙fflinCMS=ZxSfx=0˙
16 df-ne fx0˙¬fx=0˙
17 16 rexbii xSfx0˙xS¬fx=0˙
18 rexnal xS¬fx=0˙¬xSfx=0˙
19 17 18 bitr2i ¬xSfx=0˙xSfx0˙
20 19 anbi2i finSupp0˙fflinCMS=Z¬xSfx=0˙finSupp0˙fflinCMS=ZxSfx0˙
21 pm4.61 ¬finSupp0˙fflinCMS=ZxSfx=0˙finSupp0˙fflinCMS=Z¬xSfx=0˙
22 df-3an finSupp0˙fflinCMS=ZxSfx0˙finSupp0˙fflinCMS=ZxSfx0˙
23 20 21 22 3bitr4i ¬finSupp0˙fflinCMS=ZxSfx=0˙finSupp0˙fflinCMS=ZxSfx0˙
24 23 rexbii fES¬finSupp0˙fflinCMS=ZxSfx=0˙fESfinSupp0˙fflinCMS=ZxSfx0˙
25 15 24 bitr3i ¬fESfinSupp0˙fflinCMS=ZxSfx=0˙fESfinSupp0˙fflinCMS=ZxSfx0˙
26 25 a1i MWS𝒫B¬fESfinSupp0˙fflinCMS=ZxSfx=0˙fESfinSupp0˙fflinCMS=ZxSfx0˙
27 7 14 26 3bitrd MWS𝒫BSlinDepSMfESfinSupp0˙fflinCMS=ZxSfx0˙