Metamath Proof Explorer


Theorem islindf2

Description: Property of an independent family of vectors with prior constrained domain and codomain. (Contributed by Stefan O'Rear, 26-Feb-2015)

Ref Expression
Hypotheses islindf.b B=BaseW
islindf.v ·˙=W
islindf.k K=LSpanW
islindf.s S=ScalarW
islindf.n N=BaseS
islindf.z 0˙=0S
Assertion islindf2 WYIXF:IBFLIndFWxIkN0˙¬k·˙FxKFIx

Proof

Step Hyp Ref Expression
1 islindf.b B=BaseW
2 islindf.v ·˙=W
3 islindf.k K=LSpanW
4 islindf.s S=ScalarW
5 islindf.n N=BaseS
6 islindf.z 0˙=0S
7 simp1 WYIXF:IBWY
8 simp3 WYIXF:IBF:IB
9 simp2 WYIXF:IBIX
10 8 9 fexd WYIXF:IBFV
11 1 2 3 4 5 6 islindf WYFVFLIndFWF:domFBxdomFkN0˙¬k·˙FxKFdomFx
12 7 10 11 syl2anc WYIXF:IBFLIndFWF:domFBxdomFkN0˙¬k·˙FxKFdomFx
13 ffdm F:IBF:domFBdomFI
14 13 simpld F:IBF:domFB
15 14 3ad2ant3 WYIXF:IBF:domFB
16 15 biantrurd WYIXF:IBxdomFkN0˙¬k·˙FxKFdomFxF:domFBxdomFkN0˙¬k·˙FxKFdomFx
17 fdm F:IBdomF=I
18 17 3ad2ant3 WYIXF:IBdomF=I
19 18 difeq1d WYIXF:IBdomFx=Ix
20 19 imaeq2d WYIXF:IBFdomFx=FIx
21 20 fveq2d WYIXF:IBKFdomFx=KFIx
22 21 eleq2d WYIXF:IBk·˙FxKFdomFxk·˙FxKFIx
23 22 notbid WYIXF:IB¬k·˙FxKFdomFx¬k·˙FxKFIx
24 23 ralbidv WYIXF:IBkN0˙¬k·˙FxKFdomFxkN0˙¬k·˙FxKFIx
25 18 24 raleqbidv WYIXF:IBxdomFkN0˙¬k·˙FxKFdomFxxIkN0˙¬k·˙FxKFIx
26 12 16 25 3bitr2d WYIXF:IBFLIndFWxIkN0˙¬k·˙FxKFIx