Metamath Proof Explorer


Theorem islssfg2

Description: Property of a finitely generated left (sub)module, with a relaxed constraint on the spanning vectors. (Contributed by Stefan O'Rear, 24-Jan-2015)

Ref Expression
Hypotheses islssfg.x X=W𝑠U
islssfg.s S=LSubSpW
islssfg.n N=LSpanW
islssfg2.b B=BaseW
Assertion islssfg2 WLModUSXLFinGenb𝒫BFinNb=U

Proof

Step Hyp Ref Expression
1 islssfg.x X=W𝑠U
2 islssfg.s S=LSubSpW
3 islssfg.n N=LSpanW
4 islssfg2.b B=BaseW
5 1 2 3 islssfg WLModUSXLFinGenb𝒫UbFinNb=U
6 4 2 lssss NbSNbB
7 6 adantl WLModNbSNbB
8 sstr2 bNbNbBbB
9 7 8 mpan9 WLModNbSbNbbB
10 4 3 lspssid WLModbBbNb
11 10 adantlr WLModNbSbBbNb
12 9 11 impbida WLModNbSbNbbB
13 vex bV
14 13 elpw b𝒫NbbNb
15 13 elpw b𝒫BbB
16 12 14 15 3bitr4g WLModNbSb𝒫Nbb𝒫B
17 eleq1 Nb=UNbSUS
18 17 anbi2d Nb=UWLModNbSWLModUS
19 pweq Nb=U𝒫Nb=𝒫U
20 19 eleq2d Nb=Ub𝒫Nbb𝒫U
21 20 bibi1d Nb=Ub𝒫Nbb𝒫Bb𝒫Ub𝒫B
22 18 21 imbi12d Nb=UWLModNbSb𝒫Nbb𝒫BWLModUSb𝒫Ub𝒫B
23 16 22 mpbii Nb=UWLModUSb𝒫Ub𝒫B
24 23 com12 WLModUSNb=Ub𝒫Ub𝒫B
25 24 adantld WLModUSbFinNb=Ub𝒫Ub𝒫B
26 25 pm5.32rd WLModUSb𝒫UbFinNb=Ub𝒫BbFinNb=U
27 elin b𝒫BFinb𝒫BbFin
28 27 anbi1i b𝒫BFinNb=Ub𝒫BbFinNb=U
29 anass b𝒫BbFinNb=Ub𝒫BbFinNb=U
30 28 29 bitr2i b𝒫BbFinNb=Ub𝒫BFinNb=U
31 26 30 bitrdi WLModUSb𝒫UbFinNb=Ub𝒫BFinNb=U
32 31 rexbidv2 WLModUSb𝒫UbFinNb=Ub𝒫BFinNb=U
33 5 32 bitrd WLModUSXLFinGenb𝒫BFinNb=U