Metamath Proof Explorer


Theorem ismbl

Description: The predicate " A is Lebesgue-measurable". A set is measurable if it splits every other set x in a "nice" way, that is, if the measure of the pieces x i^i A and x \ A sum up to the measure of x (assuming that the measure of x is a real number, so that this addition makes sense). (Contributed by Mario Carneiro, 17-Mar-2014)

Ref Expression
Assertion ismbl AdomvolAx𝒫vol*xvol*x=vol*xA+vol*xA

Proof

Step Hyp Ref Expression
1 ineq2 y=Axy=xA
2 1 fveq2d y=Avol*xy=vol*xA
3 difeq2 y=Axy=xA
4 3 fveq2d y=Avol*xy=vol*xA
5 2 4 oveq12d y=Avol*xy+vol*xy=vol*xA+vol*xA
6 5 eqeq2d y=Avol*x=vol*xy+vol*xyvol*x=vol*xA+vol*xA
7 6 ralbidv y=Axvol*-1vol*x=vol*xy+vol*xyxvol*-1vol*x=vol*xA+vol*xA
8 df-vol vol=vol*y|xvol*-1vol*x=vol*xy+vol*xy
9 8 dmeqi domvol=domvol*y|xvol*-1vol*x=vol*xy+vol*xy
10 dmres domvol*y|xvol*-1vol*x=vol*xy+vol*xy=y|xvol*-1vol*x=vol*xy+vol*xydomvol*
11 ovolf vol*:𝒫0+∞
12 11 fdmi domvol*=𝒫
13 12 ineq2i y|xvol*-1vol*x=vol*xy+vol*xydomvol*=y|xvol*-1vol*x=vol*xy+vol*xy𝒫
14 9 10 13 3eqtri domvol=y|xvol*-1vol*x=vol*xy+vol*xy𝒫
15 dfrab2 y𝒫|xvol*-1vol*x=vol*xy+vol*xy=y|xvol*-1vol*x=vol*xy+vol*xy𝒫
16 14 15 eqtr4i domvol=y𝒫|xvol*-1vol*x=vol*xy+vol*xy
17 7 16 elrab2 AdomvolA𝒫xvol*-1vol*x=vol*xA+vol*xA
18 reex V
19 18 elpw2 A𝒫A
20 ffn vol*:𝒫0+∞vol*Fn𝒫
21 elpreima vol*Fn𝒫xvol*-1x𝒫vol*x
22 11 20 21 mp2b xvol*-1x𝒫vol*x
23 22 imbi1i xvol*-1vol*x=vol*xA+vol*xAx𝒫vol*xvol*x=vol*xA+vol*xA
24 impexp x𝒫vol*xvol*x=vol*xA+vol*xAx𝒫vol*xvol*x=vol*xA+vol*xA
25 23 24 bitri xvol*-1vol*x=vol*xA+vol*xAx𝒫vol*xvol*x=vol*xA+vol*xA
26 25 ralbii2 xvol*-1vol*x=vol*xA+vol*xAx𝒫vol*xvol*x=vol*xA+vol*xA
27 19 26 anbi12i A𝒫xvol*-1vol*x=vol*xA+vol*xAAx𝒫vol*xvol*x=vol*xA+vol*xA
28 17 27 bitri AdomvolAx𝒫vol*xvol*x=vol*xA+vol*xA