Description: The predicate " A is Lebesgue-measurable". A set is measurable if it splits every other set x in a "nice" way, that is, if the measure of the pieces x i^i A and x \ A sum up to the measure of x (assuming that the measure of x is a real number, so that this addition makes sense). (Contributed by Mario Carneiro, 17-Mar-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | ismbl | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ineq2 | |
|
2 | 1 | fveq2d | |
3 | difeq2 | |
|
4 | 3 | fveq2d | |
5 | 2 4 | oveq12d | |
6 | 5 | eqeq2d | |
7 | 6 | ralbidv | |
8 | df-vol | |
|
9 | 8 | dmeqi | |
10 | dmres | |
|
11 | ovolf | |
|
12 | 11 | fdmi | |
13 | 12 | ineq2i | |
14 | 9 10 13 | 3eqtri | |
15 | dfrab2 | |
|
16 | 14 15 | eqtr4i | |
17 | 7 16 | elrab2 | |
18 | reex | |
|
19 | 18 | elpw2 | |
20 | ffn | |
|
21 | elpreima | |
|
22 | 11 20 21 | mp2b | |
23 | 22 | imbi1i | |
24 | impexp | |
|
25 | 23 24 | bitri | |
26 | 25 | ralbii2 | |
27 | 19 26 | anbi12i | |
28 | 17 27 | bitri | |