Metamath Proof Explorer


Theorem isnsqf

Description: Two ways to say that a number is not squarefree. (Contributed by Mario Carneiro, 3-Oct-2014)

Ref Expression
Assertion isnsqf AμA=0pp2A

Proof

Step Hyp Ref Expression
1 neg1cn 1
2 neg1ne0 10
3 prmdvdsfi Ap|pAFin
4 hashcl p|pAFinp|pA0
5 3 4 syl Ap|pA0
6 5 nn0zd Ap|pA
7 expne0i 110p|pA1p|pA0
8 1 2 6 7 mp3an12i A1p|pA0
9 iffalse ¬pp2Aifpp2A01p|pA=1p|pA
10 9 neeq1d ¬pp2Aifpp2A01p|pA01p|pA0
11 8 10 syl5ibrcom A¬pp2Aifpp2A01p|pA0
12 muval AμA=ifpp2A01p|pA
13 12 neeq1d AμA0ifpp2A01p|pA0
14 11 13 sylibrd A¬pp2AμA0
15 14 necon4bd AμA=0pp2A
16 iftrue pp2Aifpp2A01p|pA=0
17 12 eqeq1d AμA=0ifpp2A01p|pA=0
18 16 17 imbitrrid App2AμA=0
19 15 18 impbid AμA=0pp2A