Metamath Proof Explorer


Theorem isowe2

Description: A weak form of isowe that does not need Replacement. (Contributed by Mario Carneiro, 18-Nov-2014)

Ref Expression
Assertion isowe2 HIsomR,SABxHxVSWeBRWeA

Proof

Step Hyp Ref Expression
1 simpl HIsomR,SABxHxVHIsomR,SAB
2 imaeq2 x=yHx=Hy
3 2 eleq1d x=yHxVHyV
4 3 spvv xHxVHyV
5 4 adantl HIsomR,SABxHxVHyV
6 1 5 isofrlem HIsomR,SABxHxVSFrBRFrA
7 isosolem HIsomR,SABSOrBROrA
8 7 adantr HIsomR,SABxHxVSOrBROrA
9 6 8 anim12d HIsomR,SABxHxVSFrBSOrBRFrAROrA
10 df-we SWeBSFrBSOrB
11 df-we RWeARFrAROrA
12 9 10 11 3imtr4g HIsomR,SABxHxVSWeBRWeA