Metamath Proof Explorer


Theorem isphtpy

Description: Membership in the class of path homotopies between two continuous functions. (Contributed by Jeff Madsen, 2-Sep-2009) (Revised by Mario Carneiro, 23-Feb-2015)

Ref Expression
Hypotheses isphtpy.2 φFIICnJ
isphtpy.3 φGIICnJ
Assertion isphtpy φHFPHtpyJGHFIIHtpyJGs010Hs=F01Hs=F1

Proof

Step Hyp Ref Expression
1 isphtpy.2 φFIICnJ
2 isphtpy.3 φGIICnJ
3 cntop2 FIICnJJTop
4 oveq2 j=JIICnj=IICnJ
5 oveq2 j=JIIHtpyj=IIHtpyJ
6 5 oveqd j=JfIIHtpyjg=fIIHtpyJg
7 6 rabeqdv j=JhfIIHtpyjg|s010hs=f01hs=f1=hfIIHtpyJg|s010hs=f01hs=f1
8 4 4 7 mpoeq123dv j=JfIICnj,gIICnjhfIIHtpyjg|s010hs=f01hs=f1=fIICnJ,gIICnJhfIIHtpyJg|s010hs=f01hs=f1
9 df-phtpy PHtpy=jTopfIICnj,gIICnjhfIIHtpyjg|s010hs=f01hs=f1
10 ovex IICnJV
11 10 10 mpoex fIICnJ,gIICnJhfIIHtpyJg|s010hs=f01hs=f1V
12 8 9 11 fvmpt JTopPHtpyJ=fIICnJ,gIICnJhfIIHtpyJg|s010hs=f01hs=f1
13 1 3 12 3syl φPHtpyJ=fIICnJ,gIICnJhfIIHtpyJg|s010hs=f01hs=f1
14 oveq12 f=Fg=GfIIHtpyJg=FIIHtpyJG
15 simpl f=Fg=Gf=F
16 15 fveq1d f=Fg=Gf0=F0
17 16 eqeq2d f=Fg=G0hs=f00hs=F0
18 15 fveq1d f=Fg=Gf1=F1
19 18 eqeq2d f=Fg=G1hs=f11hs=F1
20 17 19 anbi12d f=Fg=G0hs=f01hs=f10hs=F01hs=F1
21 20 ralbidv f=Fg=Gs010hs=f01hs=f1s010hs=F01hs=F1
22 14 21 rabeqbidv f=Fg=GhfIIHtpyJg|s010hs=f01hs=f1=hFIIHtpyJG|s010hs=F01hs=F1
23 22 adantl φf=Fg=GhfIIHtpyJg|s010hs=f01hs=f1=hFIIHtpyJG|s010hs=F01hs=F1
24 ovex FIIHtpyJGV
25 24 rabex hFIIHtpyJG|s010hs=F01hs=F1V
26 25 a1i φhFIIHtpyJG|s010hs=F01hs=F1V
27 13 23 1 2 26 ovmpod φFPHtpyJG=hFIIHtpyJG|s010hs=F01hs=F1
28 27 eleq2d φHFPHtpyJGHhFIIHtpyJG|s010hs=F01hs=F1
29 oveq h=H0hs=0Hs
30 29 eqeq1d h=H0hs=F00Hs=F0
31 oveq h=H1hs=1Hs
32 31 eqeq1d h=H1hs=F11Hs=F1
33 30 32 anbi12d h=H0hs=F01hs=F10Hs=F01Hs=F1
34 33 ralbidv h=Hs010hs=F01hs=F1s010Hs=F01Hs=F1
35 34 elrab HhFIIHtpyJG|s010hs=F01hs=F1HFIIHtpyJGs010Hs=F01Hs=F1
36 28 35 bitrdi φHFPHtpyJGHFIIHtpyJGs010Hs=F01Hs=F1