Description: Membership in the class of path homotopies between two continuous functions. (Contributed by Jeff Madsen, 2-Sep-2009) (Revised by Mario Carneiro, 23-Feb-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | isphtpy.2 | |
|
isphtpy.3 | |
||
Assertion | isphtpy | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isphtpy.2 | |
|
2 | isphtpy.3 | |
|
3 | cntop2 | |
|
4 | oveq2 | |
|
5 | oveq2 | |
|
6 | 5 | oveqd | |
7 | 6 | rabeqdv | |
8 | 4 4 7 | mpoeq123dv | |
9 | df-phtpy | |
|
10 | ovex | |
|
11 | 10 10 | mpoex | |
12 | 8 9 11 | fvmpt | |
13 | 1 3 12 | 3syl | |
14 | oveq12 | |
|
15 | simpl | |
|
16 | 15 | fveq1d | |
17 | 16 | eqeq2d | |
18 | 15 | fveq1d | |
19 | 18 | eqeq2d | |
20 | 17 19 | anbi12d | |
21 | 20 | ralbidv | |
22 | 14 21 | rabeqbidv | |
23 | 22 | adantl | |
24 | ovex | |
|
25 | 24 | rabex | |
26 | 25 | a1i | |
27 | 13 23 1 2 26 | ovmpod | |
28 | 27 | eleq2d | |
29 | oveq | |
|
30 | 29 | eqeq1d | |
31 | oveq | |
|
32 | 31 | eqeq1d | |
33 | 30 32 | anbi12d | |
34 | 33 | ralbidv | |
35 | 34 | elrab | |
36 | 28 35 | bitrdi | |