Metamath Proof Explorer


Theorem isplig

Description: The predicate "is a planar incidence geometry" for sets. (Contributed by FL, 2-Aug-2009)

Ref Expression
Hypothesis isplig.1 P=G
Assertion isplig GAGPligaPbPab∃!lGalbllGaPbPabalblaPbPcPlG¬alblcl

Proof

Step Hyp Ref Expression
1 isplig.1 P=G
2 unieq x=Gx=G
3 2 1 eqtr4di x=Gx=P
4 reueq1 x=G∃!lxalbl∃!lGalbl
5 4 imbi2d x=Gab∃!lxalblab∃!lGalbl
6 3 5 raleqbidv x=Gbxab∃!lxalblbPab∃!lGalbl
7 3 6 raleqbidv x=Gaxbxab∃!lxalblaPbPab∃!lGalbl
8 3 rexeqdv x=GbxabalblbPabalbl
9 3 8 rexeqbidv x=GaxbxabalblaPbPabalbl
10 9 raleqbi1dv x=GlxaxbxabalbllGaPbPabalbl
11 raleq x=Glx¬alblcllG¬alblcl
12 3 11 rexeqbidv x=Gcxlx¬alblclcPlG¬alblcl
13 3 12 rexeqbidv x=Gbxcxlx¬alblclbPcPlG¬alblcl
14 3 13 rexeqbidv x=Gaxbxcxlx¬alblclaPbPcPlG¬alblcl
15 7 10 14 3anbi123d x=Gaxbxab∃!lxalbllxaxbxabalblaxbxcxlx¬alblclaPbPab∃!lGalbllGaPbPabalblaPbPcPlG¬alblcl
16 df-plig Plig=x|axbxab∃!lxalbllxaxbxabalblaxbxcxlx¬alblcl
17 15 16 elab2g GAGPligaPbPab∃!lGalbllGaPbPabalblaPbPcPlG¬alblcl