Metamath Proof Explorer


Theorem isrgr

Description: The property of a class being a k-regular graph. (Contributed by Alexander van der Vekens, 7-Jul-2018) (Revised by AV, 26-Dec-2020)

Ref Expression
Hypotheses isrgr.v V=VtxG
isrgr.d D=VtxDegG
Assertion isrgr GWKZGRegGraphKK0*vVDv=K

Proof

Step Hyp Ref Expression
1 isrgr.v V=VtxG
2 isrgr.d D=VtxDegG
3 eleq1 k=Kk0*K0*
4 3 adantl g=Gk=Kk0*K0*
5 fveq2 g=GVtxg=VtxG
6 5 adantr g=Gk=KVtxg=VtxG
7 fveq2 g=GVtxDegg=VtxDegG
8 7 fveq1d g=GVtxDeggv=VtxDegGv
9 8 adantr g=Gk=KVtxDeggv=VtxDegGv
10 simpr g=Gk=Kk=K
11 9 10 eqeq12d g=Gk=KVtxDeggv=kVtxDegGv=K
12 6 11 raleqbidv g=Gk=KvVtxgVtxDeggv=kvVtxGVtxDegGv=K
13 4 12 anbi12d g=Gk=Kk0*vVtxgVtxDeggv=kK0*vVtxGVtxDegGv=K
14 df-rgr RegGraph=gk|k0*vVtxgVtxDeggv=k
15 13 14 brabga GWKZGRegGraphKK0*vVtxGVtxDegGv=K
16 2 fveq1i Dv=VtxDegGv
17 16 eqeq1i Dv=KVtxDegGv=K
18 1 17 raleqbii vVDv=KvVtxGVtxDegGv=K
19 18 bicomi vVtxGVtxDegGv=KvVDv=K
20 19 a1i GWKZvVtxGVtxDegGv=KvVDv=K
21 20 anbi2d GWKZK0*vVtxGVtxDegGv=KK0*vVDv=K
22 15 21 bitrd GWKZGRegGraphKK0*vVDv=K