Metamath Proof Explorer


Theorem isrgr

Description: The property of a class being a k-regular graph. (Contributed by Alexander van der Vekens, 7-Jul-2018) (Revised by AV, 26-Dec-2020)

Ref Expression
Hypotheses isrgr.v V = Vtx G
isrgr.d D = VtxDeg G
Assertion isrgr G W K Z G RegGraph K K 0 * v V D v = K

Proof

Step Hyp Ref Expression
1 isrgr.v V = Vtx G
2 isrgr.d D = VtxDeg G
3 eleq1 k = K k 0 * K 0 *
4 3 adantl g = G k = K k 0 * K 0 *
5 fveq2 g = G Vtx g = Vtx G
6 5 adantr g = G k = K Vtx g = Vtx G
7 fveq2 g = G VtxDeg g = VtxDeg G
8 7 fveq1d g = G VtxDeg g v = VtxDeg G v
9 8 adantr g = G k = K VtxDeg g v = VtxDeg G v
10 simpr g = G k = K k = K
11 9 10 eqeq12d g = G k = K VtxDeg g v = k VtxDeg G v = K
12 6 11 raleqbidv g = G k = K v Vtx g VtxDeg g v = k v Vtx G VtxDeg G v = K
13 4 12 anbi12d g = G k = K k 0 * v Vtx g VtxDeg g v = k K 0 * v Vtx G VtxDeg G v = K
14 df-rgr RegGraph = g k | k 0 * v Vtx g VtxDeg g v = k
15 13 14 brabga G W K Z G RegGraph K K 0 * v Vtx G VtxDeg G v = K
16 2 fveq1i D v = VtxDeg G v
17 16 eqeq1i D v = K VtxDeg G v = K
18 1 17 raleqbii v V D v = K v Vtx G VtxDeg G v = K
19 18 bicomi v Vtx G VtxDeg G v = K v V D v = K
20 19 a1i G W K Z v Vtx G VtxDeg G v = K v V D v = K
21 20 anbi2d G W K Z K 0 * v Vtx G VtxDeg G v = K K 0 * v V D v = K
22 15 21 bitrd G W K Z G RegGraph K K 0 * v V D v = K