Metamath Proof Explorer


Theorem isrhm

Description: A function is a ring homomorphism iff it preserves both addition and multiplication. (Contributed by Stefan O'Rear, 7-Mar-2015)

Ref Expression
Hypotheses isrhm.m M=mulGrpR
isrhm.n N=mulGrpS
Assertion isrhm FRRingHomSRRingSRingFRGrpHomSFMMndHomN

Proof

Step Hyp Ref Expression
1 isrhm.m M=mulGrpR
2 isrhm.n N=mulGrpS
3 dfrhm2 RingHom=rRing,sRingrGrpHomsmulGrprMndHommulGrps
4 3 elmpocl FRRingHomSRRingSRing
5 oveq12 r=Rs=SrGrpHoms=RGrpHomS
6 fveq2 r=RmulGrpr=mulGrpR
7 fveq2 s=SmulGrps=mulGrpS
8 6 7 oveqan12d r=Rs=SmulGrprMndHommulGrps=mulGrpRMndHommulGrpS
9 5 8 ineq12d r=Rs=SrGrpHomsmulGrprMndHommulGrps=RGrpHomSmulGrpRMndHommulGrpS
10 ovex RGrpHomSV
11 10 inex1 RGrpHomSmulGrpRMndHommulGrpSV
12 9 3 11 ovmpoa RRingSRingRRingHomS=RGrpHomSmulGrpRMndHommulGrpS
13 12 eleq2d RRingSRingFRRingHomSFRGrpHomSmulGrpRMndHommulGrpS
14 elin FRGrpHomSmulGrpRMndHommulGrpSFRGrpHomSFmulGrpRMndHommulGrpS
15 1 2 oveq12i MMndHomN=mulGrpRMndHommulGrpS
16 15 eqcomi mulGrpRMndHommulGrpS=MMndHomN
17 16 eleq2i FmulGrpRMndHommulGrpSFMMndHomN
18 17 anbi2i FRGrpHomSFmulGrpRMndHommulGrpSFRGrpHomSFMMndHomN
19 14 18 bitri FRGrpHomSmulGrpRMndHommulGrpSFRGrpHomSFMMndHomN
20 13 19 bitrdi RRingSRingFRRingHomSFRGrpHomSFMMndHomN
21 4 20 biadanii FRRingHomSRRingSRingFRGrpHomSFMMndHomN