Description: A function is a ring homomorphism iff it preserves both addition and multiplication. (Contributed by Stefan O'Rear, 7-Mar-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | isrhm.m | |
|
isrhm.n | |
||
Assertion | isrhm | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isrhm.m | |
|
2 | isrhm.n | |
|
3 | dfrhm2 | |
|
4 | 3 | elmpocl | |
5 | oveq12 | |
|
6 | fveq2 | |
|
7 | fveq2 | |
|
8 | 6 7 | oveqan12d | |
9 | 5 8 | ineq12d | |
10 | ovex | |
|
11 | 10 | inex1 | |
12 | 9 3 11 | ovmpoa | |
13 | 12 | eleq2d | |
14 | elin | |
|
15 | 1 2 | oveq12i | |
16 | 15 | eqcomi | |
17 | 16 | eleq2i | |
18 | 17 | anbi2i | |
19 | 14 18 | bitri | |
20 | 13 19 | bitrdi | |
21 | 4 20 | biadanii | |