Metamath Proof Explorer


Theorem isringd

Description: Properties that determine a ring. (Contributed by NM, 2-Aug-2013)

Ref Expression
Hypotheses isringd.b φB=BaseR
isringd.p φ+˙=+R
isringd.t φ·˙=R
isringd.g φRGrp
isringd.c φxByBx·˙yB
isringd.a φxByBzBx·˙y·˙z=x·˙y·˙z
isringd.d φxByBzBx·˙y+˙z=x·˙y+˙x·˙z
isringd.e φxByBzBx+˙y·˙z=x·˙z+˙y·˙z
isringd.u φ1˙B
isringd.i φxB1˙·˙x=x
isringd.h φxBx·˙1˙=x
Assertion isringd φRRing

Proof

Step Hyp Ref Expression
1 isringd.b φB=BaseR
2 isringd.p φ+˙=+R
3 isringd.t φ·˙=R
4 isringd.g φRGrp
5 isringd.c φxByBx·˙yB
6 isringd.a φxByBzBx·˙y·˙z=x·˙y·˙z
7 isringd.d φxByBzBx·˙y+˙z=x·˙y+˙x·˙z
8 isringd.e φxByBzBx+˙y·˙z=x·˙z+˙y·˙z
9 isringd.u φ1˙B
10 isringd.i φxB1˙·˙x=x
11 isringd.h φxBx·˙1˙=x
12 eqid mulGrpR=mulGrpR
13 eqid BaseR=BaseR
14 12 13 mgpbas BaseR=BasemulGrpR
15 1 14 eqtrdi φB=BasemulGrpR
16 eqid R=R
17 12 16 mgpplusg R=+mulGrpR
18 3 17 eqtrdi φ·˙=+mulGrpR
19 15 18 5 6 9 10 11 ismndd φmulGrpRMnd
20 1 eleq2d φxBxBaseR
21 1 eleq2d φyByBaseR
22 1 eleq2d φzBzBaseR
23 20 21 22 3anbi123d φxByBzBxBaseRyBaseRzBaseR
24 23 biimpar φxBaseRyBaseRzBaseRxByBzB
25 3 adantr φxByBzB·˙=R
26 eqidd φxByBzBx=x
27 2 oveqdr φxByBzBy+˙z=y+Rz
28 25 26 27 oveq123d φxByBzBx·˙y+˙z=xRy+Rz
29 2 adantr φxByBzB+˙=+R
30 3 oveqdr φxByBzBx·˙y=xRy
31 3 oveqdr φxByBzBx·˙z=xRz
32 29 30 31 oveq123d φxByBzBx·˙y+˙x·˙z=xRy+RxRz
33 7 28 32 3eqtr3d φxByBzBxRy+Rz=xRy+RxRz
34 2 oveqdr φxByBzBx+˙y=x+Ry
35 eqidd φxByBzBz=z
36 25 34 35 oveq123d φxByBzBx+˙y·˙z=x+RyRz
37 3 oveqdr φxByBzBy·˙z=yRz
38 29 31 37 oveq123d φxByBzBx·˙z+˙y·˙z=xRz+RyRz
39 8 36 38 3eqtr3d φxByBzBx+RyRz=xRz+RyRz
40 33 39 jca φxByBzBxRy+Rz=xRy+RxRzx+RyRz=xRz+RyRz
41 24 40 syldan φxBaseRyBaseRzBaseRxRy+Rz=xRy+RxRzx+RyRz=xRz+RyRz
42 41 ralrimivvva φxBaseRyBaseRzBaseRxRy+Rz=xRy+RxRzx+RyRz=xRz+RyRz
43 eqid +R=+R
44 13 12 43 16 isring RRingRGrpmulGrpRMndxBaseRyBaseRzBaseRxRy+Rz=xRy+RxRzx+RyRz=xRz+RyRz
45 4 19 42 44 syl3anbrc φRRing