Description: Properties that determine a ring. (Contributed by NM, 2-Aug-2013)
Ref | Expression | ||
---|---|---|---|
Hypotheses | isringd.b | |
|
isringd.p | |
||
isringd.t | |
||
isringd.g | |
||
isringd.c | |
||
isringd.a | |
||
isringd.d | |
||
isringd.e | |
||
isringd.u | |
||
isringd.i | |
||
isringd.h | |
||
Assertion | isringd | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isringd.b | |
|
2 | isringd.p | |
|
3 | isringd.t | |
|
4 | isringd.g | |
|
5 | isringd.c | |
|
6 | isringd.a | |
|
7 | isringd.d | |
|
8 | isringd.e | |
|
9 | isringd.u | |
|
10 | isringd.i | |
|
11 | isringd.h | |
|
12 | eqid | |
|
13 | eqid | |
|
14 | 12 13 | mgpbas | |
15 | 1 14 | eqtrdi | |
16 | eqid | |
|
17 | 12 16 | mgpplusg | |
18 | 3 17 | eqtrdi | |
19 | 15 18 5 6 9 10 11 | ismndd | |
20 | 1 | eleq2d | |
21 | 1 | eleq2d | |
22 | 1 | eleq2d | |
23 | 20 21 22 | 3anbi123d | |
24 | 23 | biimpar | |
25 | 3 | adantr | |
26 | eqidd | |
|
27 | 2 | oveqdr | |
28 | 25 26 27 | oveq123d | |
29 | 2 | adantr | |
30 | 3 | oveqdr | |
31 | 3 | oveqdr | |
32 | 29 30 31 | oveq123d | |
33 | 7 28 32 | 3eqtr3d | |
34 | 2 | oveqdr | |
35 | eqidd | |
|
36 | 25 34 35 | oveq123d | |
37 | 3 | oveqdr | |
38 | 29 31 37 | oveq123d | |
39 | 8 36 38 | 3eqtr3d | |
40 | 33 39 | jca | |
41 | 24 40 | syldan | |
42 | 41 | ralrimivvva | |
43 | eqid | |
|
44 | 13 12 43 16 | isring | |
45 | 4 19 42 44 | syl3anbrc | |