Metamath Proof Explorer


Theorem isrngod

Description: Conditions that determine a ring. (Changed label from isringd to isrngod -NM 2-Aug-2013.) (Contributed by Jeff Madsen, 19-Jun-2010) (Revised by Mario Carneiro, 21-Dec-2013) (New usage is discouraged.)

Ref Expression
Hypotheses isringod.1 φGAbelOp
isringod.2 φX=ranG
isringod.3 φH:X×XX
isringod.4 φxXyXzXxHyHz=xHyHz
isringod.5 φxXyXzXxHyGz=xHyGxHz
isringod.6 φxXyXzXxGyHz=xHzGyHz
isringod.7 φUX
isringod.8 φyXUHy=y
isringod.9 φyXyHU=y
Assertion isrngod φGHRingOps

Proof

Step Hyp Ref Expression
1 isringod.1 φGAbelOp
2 isringod.2 φX=ranG
3 isringod.3 φH:X×XX
4 isringod.4 φxXyXzXxHyHz=xHyHz
5 isringod.5 φxXyXzXxHyGz=xHyGxHz
6 isringod.6 φxXyXzXxGyHz=xHzGyHz
7 isringod.7 φUX
8 isringod.8 φyXUHy=y
9 isringod.9 φyXyHU=y
10 2 sqxpeqd φX×X=ranG×ranG
11 10 2 feq23d φH:X×XXH:ranG×ranGranG
12 3 11 mpbid φH:ranG×ranGranG
13 4 5 6 3jca φxXyXzXxHyHz=xHyHzxHyGz=xHyGxHzxGyHz=xHzGyHz
14 13 ralrimivvva φxXyXzXxHyHz=xHyHzxHyGz=xHyGxHzxGyHz=xHzGyHz
15 2 raleqdv φzXxHyHz=xHyHzxHyGz=xHyGxHzxGyHz=xHzGyHzzranGxHyHz=xHyHzxHyGz=xHyGxHzxGyHz=xHzGyHz
16 2 15 raleqbidv φyXzXxHyHz=xHyHzxHyGz=xHyGxHzxGyHz=xHzGyHzyranGzranGxHyHz=xHyHzxHyGz=xHyGxHzxGyHz=xHzGyHz
17 2 16 raleqbidv φxXyXzXxHyHz=xHyHzxHyGz=xHyGxHzxGyHz=xHzGyHzxranGyranGzranGxHyHz=xHyHzxHyGz=xHyGxHzxGyHz=xHzGyHz
18 14 17 mpbid φxranGyranGzranGxHyHz=xHyHzxHyGz=xHyGxHzxGyHz=xHzGyHz
19 8 9 jca φyXUHy=yyHU=y
20 19 ralrimiva φyXUHy=yyHU=y
21 oveq1 x=UxHy=UHy
22 21 eqeq1d x=UxHy=yUHy=y
23 22 ovanraleqv x=UyXxHy=yyHx=yyXUHy=yyHU=y
24 23 rspcev UXyXUHy=yyHU=yxXyXxHy=yyHx=y
25 7 20 24 syl2anc φxXyXxHy=yyHx=y
26 2 raleqdv φyXxHy=yyHx=yyranGxHy=yyHx=y
27 2 26 rexeqbidv φxXyXxHy=yyHx=yxranGyranGxHy=yyHx=y
28 25 27 mpbid φxranGyranGxHy=yyHx=y
29 18 28 jca φxranGyranGzranGxHyHz=xHyHzxHyGz=xHyGxHzxGyHz=xHzGyHzxranGyranGxHy=yyHx=y
30 1 12 29 jca31 φGAbelOpH:ranG×ranGranGxranGyranGzranGxHyHz=xHyHzxHyGz=xHyGxHzxGyHz=xHzGyHzxranGyranGxHy=yyHx=y
31 rnexg GAbelOpranGV
32 1 31 syl φranGV
33 32 32 xpexd φranG×ranGV
34 12 33 fexd φHV
35 eqid ranG=ranG
36 35 isrngo HVGHRingOpsGAbelOpH:ranG×ranGranGxranGyranGzranGxHyHz=xHyHzxHyGz=xHyGxHzxGyHz=xHzGyHzxranGyranGxHy=yyHx=y
37 34 36 syl φGHRingOpsGAbelOpH:ranG×ranGranGxranGyranGzranGxHyHz=xHyHzxHyGz=xHyGxHzxGyHz=xHzGyHzxranGyranGxHy=yyHx=y
38 30 37 mpbird φGHRingOps