Metamath Proof Explorer


Theorem issmfle2d

Description: A sufficient condition for " F being a measurable function w.r.t. to the sigma-algebra S ". (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses issmfle2d.a a φ
issmfle2d.s φ S SAlg
issmfle2d.d φ D S
issmfle2d.f φ F : D
issmfle2d.l φ a F -1 −∞ a S 𝑡 D
Assertion issmfle2d φ F SMblFn S

Proof

Step Hyp Ref Expression
1 issmfle2d.a a φ
2 issmfle2d.s φ S SAlg
3 issmfle2d.d φ D S
4 issmfle2d.f φ F : D
5 issmfle2d.l φ a F -1 −∞ a S 𝑡 D
6 4 adantr φ a F : D
7 rexr a a *
8 7 adantl φ a a *
9 6 8 preimaiocmnf φ a F -1 −∞ a = x D | F x a
10 9 5 eqeltrrd φ a x D | F x a S 𝑡 D
11 1 2 3 4 10 issmfled φ F SMblFn S