Metamath Proof Explorer


Theorem istlm

Description: The predicate " W is a topological left module". (Contributed by Mario Carneiro, 5-Oct-2015)

Ref Expression
Hypotheses istlm.s ·˙=𝑠𝑓W
istlm.j J=TopOpenW
istlm.f F=ScalarW
istlm.k K=TopOpenF
Assertion istlm WTopModWTopMndWLModFTopRing·˙K×tJCnJ

Proof

Step Hyp Ref Expression
1 istlm.s ·˙=𝑠𝑓W
2 istlm.j J=TopOpenW
3 istlm.f F=ScalarW
4 istlm.k K=TopOpenF
5 anass WTopMndLModFTopRing·˙K×tJCnJWTopMndLModFTopRing·˙K×tJCnJ
6 df-3an WTopMndWLModFTopRingWTopMndWLModFTopRing
7 elin WTopMndLModWTopMndWLMod
8 7 anbi1i WTopMndLModFTopRingWTopMndWLModFTopRing
9 6 8 bitr4i WTopMndWLModFTopRingWTopMndLModFTopRing
10 9 anbi1i WTopMndWLModFTopRing·˙K×tJCnJWTopMndLModFTopRing·˙K×tJCnJ
11 fveq2 w=WScalarw=ScalarW
12 11 3 eqtr4di w=WScalarw=F
13 12 eleq1d w=WScalarwTopRingFTopRing
14 fveq2 w=W𝑠𝑓w=𝑠𝑓W
15 14 1 eqtr4di w=W𝑠𝑓w=·˙
16 12 fveq2d w=WTopOpenScalarw=TopOpenF
17 16 4 eqtr4di w=WTopOpenScalarw=K
18 fveq2 w=WTopOpenw=TopOpenW
19 18 2 eqtr4di w=WTopOpenw=J
20 17 19 oveq12d w=WTopOpenScalarw×tTopOpenw=K×tJ
21 20 19 oveq12d w=WTopOpenScalarw×tTopOpenwCnTopOpenw=K×tJCnJ
22 15 21 eleq12d w=W𝑠𝑓wTopOpenScalarw×tTopOpenwCnTopOpenw·˙K×tJCnJ
23 13 22 anbi12d w=WScalarwTopRing𝑠𝑓wTopOpenScalarw×tTopOpenwCnTopOpenwFTopRing·˙K×tJCnJ
24 df-tlm TopMod=wTopMndLMod|ScalarwTopRing𝑠𝑓wTopOpenScalarw×tTopOpenwCnTopOpenw
25 23 24 elrab2 WTopModWTopMndLModFTopRing·˙K×tJCnJ
26 5 10 25 3bitr4ri WTopModWTopMndWLModFTopRing·˙K×tJCnJ