Metamath Proof Explorer


Theorem istlm

Description: The predicate " W is a topological left module". (Contributed by Mario Carneiro, 5-Oct-2015)

Ref Expression
Hypotheses istlm.s · ˙ = 𝑠𝑓 W
istlm.j J = TopOpen W
istlm.f F = Scalar W
istlm.k K = TopOpen F
Assertion istlm W TopMod W TopMnd W LMod F TopRing · ˙ K × t J Cn J

Proof

Step Hyp Ref Expression
1 istlm.s · ˙ = 𝑠𝑓 W
2 istlm.j J = TopOpen W
3 istlm.f F = Scalar W
4 istlm.k K = TopOpen F
5 anass W TopMnd LMod F TopRing · ˙ K × t J Cn J W TopMnd LMod F TopRing · ˙ K × t J Cn J
6 df-3an W TopMnd W LMod F TopRing W TopMnd W LMod F TopRing
7 elin W TopMnd LMod W TopMnd W LMod
8 7 anbi1i W TopMnd LMod F TopRing W TopMnd W LMod F TopRing
9 6 8 bitr4i W TopMnd W LMod F TopRing W TopMnd LMod F TopRing
10 9 anbi1i W TopMnd W LMod F TopRing · ˙ K × t J Cn J W TopMnd LMod F TopRing · ˙ K × t J Cn J
11 fveq2 w = W Scalar w = Scalar W
12 11 3 syl6eqr w = W Scalar w = F
13 12 eleq1d w = W Scalar w TopRing F TopRing
14 fveq2 w = W 𝑠𝑓 w = 𝑠𝑓 W
15 14 1 syl6eqr w = W 𝑠𝑓 w = · ˙
16 12 fveq2d w = W TopOpen Scalar w = TopOpen F
17 16 4 syl6eqr w = W TopOpen Scalar w = K
18 fveq2 w = W TopOpen w = TopOpen W
19 18 2 syl6eqr w = W TopOpen w = J
20 17 19 oveq12d w = W TopOpen Scalar w × t TopOpen w = K × t J
21 20 19 oveq12d w = W TopOpen Scalar w × t TopOpen w Cn TopOpen w = K × t J Cn J
22 15 21 eleq12d w = W 𝑠𝑓 w TopOpen Scalar w × t TopOpen w Cn TopOpen w · ˙ K × t J Cn J
23 13 22 anbi12d w = W Scalar w TopRing 𝑠𝑓 w TopOpen Scalar w × t TopOpen w Cn TopOpen w F TopRing · ˙ K × t J Cn J
24 df-tlm TopMod = w TopMnd LMod | Scalar w TopRing 𝑠𝑓 w TopOpen Scalar w × t TopOpen w Cn TopOpen w
25 23 24 elrab2 W TopMod W TopMnd LMod F TopRing · ˙ K × t J Cn J
26 5 10 25 3bitr4ri W TopMod W TopMnd W LMod F TopRing · ˙ K × t J Cn J