Metamath Proof Explorer


Theorem istopg

Description: Express the predicate " J is a topology". See istop2g for another characterization using nonempty finite intersections instead of binary intersections.

Note: In the literature, a topology is often represented by a calligraphic letter T, which resembles the letter J. This confusion may have led to J being used by some authors (e.g., K. D. Joshi, Introduction to General Topology (1983), p. 114) and it is convenient for us since we later use T to represent linear transformations (operators). (Contributed by Stefan Allan, 3-Mar-2006) (Revised by Mario Carneiro, 11-Nov-2013)

Ref Expression
Assertion istopg JAJTopxxJxJxJyJxyJ

Proof

Step Hyp Ref Expression
1 pweq z=J𝒫z=𝒫J
2 eleq2 z=JxzxJ
3 1 2 raleqbidv z=Jx𝒫zxzx𝒫JxJ
4 eleq2 z=JxyzxyJ
5 4 raleqbi1dv z=JyzxyzyJxyJ
6 5 raleqbi1dv z=JxzyzxyzxJyJxyJ
7 3 6 anbi12d z=Jx𝒫zxzxzyzxyzx𝒫JxJxJyJxyJ
8 df-top Top=z|x𝒫zxzxzyzxyz
9 7 8 elab2g JAJTopx𝒫JxJxJyJxyJ
10 df-ral x𝒫JxJxx𝒫JxJ
11 elpw2g JAx𝒫JxJ
12 11 imbi1d JAx𝒫JxJxJxJ
13 12 albidv JAxx𝒫JxJxxJxJ
14 10 13 bitrid JAx𝒫JxJxxJxJ
15 14 anbi1d JAx𝒫JxJxJyJxyJxxJxJxJyJxyJ
16 9 15 bitrd JAJTopxxJxJxJyJxyJ