Metamath Proof Explorer


Theorem isust

Description: The predicate " U is a uniform structure with base X ". (Contributed by Thierry Arnoux, 15-Nov-2017) (Revised by AV, 17-Sep-2021)

Ref Expression
Assertion isust XVUUnifOnXU𝒫X×XX×XUvUw𝒫X×XvwwUwUvwUIXvv-1UwUwwv

Proof

Step Hyp Ref Expression
1 ustval XVUnifOnX=u|u𝒫X×XX×Xuvuw𝒫X×XvwwuwuvwuIXvv-1uwuwwv
2 1 eleq2d XVUUnifOnXUu|u𝒫X×XX×Xuvuw𝒫X×XvwwuwuvwuIXvv-1uwuwwv
3 simp1 U𝒫X×XX×XUvUw𝒫X×XvwwUwUvwUIXvv-1UwUwwvU𝒫X×X
4 sqxpexg XVX×XV
5 4 pwexd XV𝒫X×XV
6 5 adantr XVU𝒫X×X𝒫X×XV
7 simpr XVU𝒫X×XU𝒫X×X
8 6 7 ssexd XVU𝒫X×XUV
9 8 ex XVU𝒫X×XUV
10 3 9 syl5 XVU𝒫X×XX×XUvUw𝒫X×XvwwUwUvwUIXvv-1UwUwwvUV
11 sseq1 u=Uu𝒫X×XU𝒫X×X
12 eleq2 u=UX×XuX×XU
13 eleq2 u=UwuwU
14 13 imbi2d u=UvwwuvwwU
15 14 ralbidv u=Uw𝒫X×Xvwwuw𝒫X×XvwwU
16 eleq2 u=UvwuvwU
17 16 raleqbi1dv u=UwuvwuwUvwU
18 eleq2 u=Uv-1uv-1U
19 rexeq u=UwuwwvwUwwv
20 18 19 3anbi23d u=UIXvv-1uwuwwvIXvv-1UwUwwv
21 15 17 20 3anbi123d u=Uw𝒫X×XvwwuwuvwuIXvv-1uwuwwvw𝒫X×XvwwUwUvwUIXvv-1UwUwwv
22 21 raleqbi1dv u=Uvuw𝒫X×XvwwuwuvwuIXvv-1uwuwwvvUw𝒫X×XvwwUwUvwUIXvv-1UwUwwv
23 11 12 22 3anbi123d u=Uu𝒫X×XX×Xuvuw𝒫X×XvwwuwuvwuIXvv-1uwuwwvU𝒫X×XX×XUvUw𝒫X×XvwwUwUvwUIXvv-1UwUwwv
24 23 elab3g U𝒫X×XX×XUvUw𝒫X×XvwwUwUvwUIXvv-1UwUwwvUVUu|u𝒫X×XX×Xuvuw𝒫X×XvwwuwuvwuIXvv-1uwuwwvU𝒫X×XX×XUvUw𝒫X×XvwwUwUvwUIXvv-1UwUwwv
25 10 24 syl XVUu|u𝒫X×XX×Xuvuw𝒫X×XvwwuwuvwuIXvv-1uwuwwvU𝒫X×XX×XUvUw𝒫X×XvwwUwUvwUIXvv-1UwUwwv
26 2 25 bitrd XVUUnifOnXU𝒫X×XX×XUvUw𝒫X×XvwwUwUvwUIXvv-1UwUwwv