Description: Implication of a class being a zero object. (Contributed by AV, 18-Apr-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | iszeroi | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id | |
|
2 | eqid | |
|
3 | eqid | |
|
4 | 1 2 3 | zerooval | |
5 | 4 | eleq2d | |
6 | elin | |
|
7 | initoo | |
|
8 | 7 | adantrd | |
9 | 6 8 | biimtrid | |
10 | 5 9 | sylbid | |
11 | 10 | imp | |
12 | simpl | |
|
13 | simpr | |
|
14 | 2 3 12 13 | iszeroo | |
15 | 14 | biimpd | |
16 | 15 | impancom | |
17 | 11 16 | jcai | |