Metamath Proof Explorer


Theorem iszeroi

Description: Implication of a class being a zero object. (Contributed by AV, 18-Apr-2020)

Ref Expression
Assertion iszeroi CCatOZeroOCOBaseCOInitOCOTermOC

Proof

Step Hyp Ref Expression
1 id CCatCCat
2 eqid BaseC=BaseC
3 eqid HomC=HomC
4 1 2 3 zerooval CCatZeroOC=InitOCTermOC
5 4 eleq2d CCatOZeroOCOInitOCTermOC
6 elin OInitOCTermOCOInitOCOTermOC
7 initoo CCatOInitOCOBaseC
8 7 adantrd CCatOInitOCOTermOCOBaseC
9 6 8 biimtrid CCatOInitOCTermOCOBaseC
10 5 9 sylbid CCatOZeroOCOBaseC
11 10 imp CCatOZeroOCOBaseC
12 simpl CCatOBaseCCCat
13 simpr CCatOBaseCOBaseC
14 2 3 12 13 iszeroo CCatOBaseCOZeroOCOInitOCOTermOC
15 14 biimpd CCatOBaseCOZeroOCOInitOCOTermOC
16 15 impancom CCatOZeroOCOBaseCOInitOCOTermOC
17 11 16 jcai CCatOZeroOCOBaseCOInitOCOTermOC