Metamath Proof Explorer


Theorem itg1addlem1

Description: Decompose a preimage, which is always a disjoint union. (Contributed by Mario Carneiro, 25-Jun-2014) (Proof shortened by Mario Carneiro, 11-Dec-2016)

Ref Expression
Hypotheses itg1addlem.1 φF:XY
itg1addlem.2 φAFin
itg1addlem.3 φkABF-1k
itg1addlem.4 φkABdomvol
itg1addlem.5 φkAvolB
Assertion itg1addlem1 φvolkAB=kAvolB

Proof

Step Hyp Ref Expression
1 itg1addlem.1 φF:XY
2 itg1addlem.2 φAFin
3 itg1addlem.3 φkABF-1k
4 itg1addlem.4 φkABdomvol
5 itg1addlem.5 φkAvolB
6 4 5 jca φkABdomvolvolB
7 6 ralrimiva φkABdomvolvolB
8 3 adantrr φkAxBBF-1k
9 simprr φkAxBxB
10 8 9 sseldd φkAxBxF-1k
11 1 ffnd φFFnX
12 11 adantr φkAxBFFnX
13 fniniseg FFnXxF-1kxXFx=k
14 12 13 syl φkAxBxF-1kxXFx=k
15 10 14 mpbid φkAxBxXFx=k
16 15 simprd φkAxBFx=k
17 16 ralrimivva φkAxBFx=k
18 invdisj kAxBFx=kDisjkAB
19 17 18 syl φDisjkAB
20 volfiniun AFinkABdomvolvolBDisjkABvolkAB=kAvolB
21 2 7 19 20 syl3anc φvolkAB=kAvolB