Description: Decompose a preimage, which is always a disjoint union. (Contributed by Mario Carneiro, 25-Jun-2014) (Proof shortened by Mario Carneiro, 11-Dec-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | itg1addlem.1 | |
|
itg1addlem.2 | |
||
itg1addlem.3 | |
||
itg1addlem.4 | |
||
itg1addlem.5 | |
||
Assertion | itg1addlem1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | itg1addlem.1 | |
|
2 | itg1addlem.2 | |
|
3 | itg1addlem.3 | |
|
4 | itg1addlem.4 | |
|
5 | itg1addlem.5 | |
|
6 | 4 5 | jca | |
7 | 6 | ralrimiva | |
8 | 3 | adantrr | |
9 | simprr | |
|
10 | 8 9 | sseldd | |
11 | 1 | ffnd | |
12 | 11 | adantr | |
13 | fniniseg | |
|
14 | 12 13 | syl | |
15 | 10 14 | mpbid | |
16 | 15 | simprd | |
17 | 16 | ralrimivva | |
18 | invdisj | |
|
19 | 17 18 | syl | |
20 | volfiniun | |
|
21 | 2 7 19 20 | syl3anc | |