Metamath Proof Explorer


Theorem itg2cl

Description: The integral of a nonnegative real function is an extended real number. (Contributed by Mario Carneiro, 28-Jun-2014)

Ref Expression
Assertion itg2cl F:0+∞2F*

Proof

Step Hyp Ref Expression
1 eqid x|gdom1gfFx=1g=x|gdom1gfFx=1g
2 1 itg2val F:0+∞2F=supx|gdom1gfFx=1g*<
3 1 itg2lcl x|gdom1gfFx=1g*
4 supxrcl x|gdom1gfFx=1g*supx|gdom1gfFx=1g*<*
5 3 4 ax-mp supx|gdom1gfFx=1g*<*
6 2 5 eqeltrdi F:0+∞2F*