Metamath Proof Explorer


Theorem itg2val

Description: Value of the integral on nonnegative real functions. (Contributed by Mario Carneiro, 28-Jun-2014)

Ref Expression
Hypothesis itg2val.1 L=x|gdom1gfFx=1g
Assertion itg2val F:0+∞2F=supL*<

Proof

Step Hyp Ref Expression
1 itg2val.1 L=x|gdom1gfFx=1g
2 xrltso <Or*
3 2 supex supL*<V
4 reex V
5 ovex 0+∞V
6 breq2 f=FgffgfF
7 6 anbi1d f=Fgffx=1ggfFx=1g
8 7 rexbidv f=Fgdom1gffx=1ggdom1gfFx=1g
9 8 abbidv f=Fx|gdom1gffx=1g=x|gdom1gfFx=1g
10 9 1 eqtr4di f=Fx|gdom1gffx=1g=L
11 10 supeq1d f=Fsupx|gdom1gffx=1g*<=supL*<
12 df-itg2 2=f0+∞supx|gdom1gffx=1g*<
13 3 4 5 11 12 fvmptmap F:0+∞2F=supL*<