Description: Equality theorem for an integral. (Contributed by Mario Carneiro, 28-Jun-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | itgeq2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid | |
|
2 | simpl | |
|
3 | 2 | con3i | |
4 | 3 | iffalsed | |
5 | simpl | |
|
6 | 5 | con3i | |
7 | 6 | iffalsed | |
8 | 4 7 | eqtr4d | |
9 | fvoveq1 | |
|
10 | 9 | breq2d | |
11 | 10 | anbi2d | |
12 | 11 9 | ifbieq1d | |
13 | 8 12 | ja | |
14 | 13 | a1d | |
15 | 14 | ralimi2 | |
16 | mpteq12 | |
|
17 | 1 15 16 | sylancr | |
18 | 17 | fveq2d | |
19 | 18 | oveq2d | |
20 | 19 | sumeq2sdv | |
21 | eqid | |
|
22 | 21 | dfitg | |
23 | eqid | |
|
24 | 23 | dfitg | |
25 | 20 22 24 | 3eqtr4g | |