Metamath Proof Explorer


Theorem itsclinecirc0

Description: The intersection points of a line through two different points Y and Z and a circle around the origin, using the definition of a line in a two dimensional Euclidean space. (Contributed by AV, 25-Feb-2023) (Proof shortened by AV, 16-May-2023)

Ref Expression
Hypotheses itsclc0.i I=12
itsclc0.e E=msup
itsclc0.p P=I
itsclc0.s S=SphereE
itsclc0.0 0˙=I×0
itsclc0.q Q=A2+B2
itsclc0.d D=R2QC2
itsclinecirc0.l L=LineME
itsclinecirc0.a A=Y2Z2
itsclinecirc0.b B=Z1Y1
itsclinecirc0.c C=Y2Z1Y1Z2
Assertion itsclinecirc0 YPZPYZR+0DX0˙SRXYLZX1=AC+BDQX2=BCADQX1=ACBDQX2=BC+ADQ

Proof

Step Hyp Ref Expression
1 itsclc0.i I=12
2 itsclc0.e E=msup
3 itsclc0.p P=I
4 itsclc0.s S=SphereE
5 itsclc0.0 0˙=I×0
6 itsclc0.q Q=A2+B2
7 itsclc0.d D=R2QC2
8 itsclinecirc0.l L=LineME
9 itsclinecirc0.a A=Y2Z2
10 itsclinecirc0.b B=Z1Y1
11 itsclinecirc0.c C=Y2Z1Y1Z2
12 1 2 3 8 9 10 11 rrx2linest2 YPZPYZYLZ=pP|Ap1+Bp2=C
13 12 adantr YPZPYZR+0DYLZ=pP|Ap1+Bp2=C
14 13 eleq2d YPZPYZR+0DXYLZXpP|Ap1+Bp2=C
15 14 anbi2d YPZPYZR+0DX0˙SRXYLZX0˙SRXpP|Ap1+Bp2=C
16 1 3 rrx2pyel YPY2
17 16 3ad2ant1 YPZPYZY2
18 1 3 rrx2pyel ZPZ2
19 18 3ad2ant2 YPZPYZZ2
20 17 19 resubcld YPZPYZY2Z2
21 9 20 eqeltrid YPZPYZA
22 21 adantr YPZPYZR+0DA
23 1 3 rrx2pxel ZPZ1
24 23 3ad2ant2 YPZPYZZ1
25 1 3 rrx2pxel YPY1
26 25 3ad2ant1 YPZPYZY1
27 24 26 resubcld YPZPYZZ1Y1
28 10 27 eqeltrid YPZPYZB
29 28 adantr YPZPYZR+0DB
30 17 24 remulcld YPZPYZY2Z1
31 26 19 remulcld YPZPYZY1Z2
32 30 31 resubcld YPZPYZY2Z1Y1Z2
33 11 32 eqeltrid YPZPYZC
34 33 adantr YPZPYZR+0DC
35 1 3 10 9 rrx2pnedifcoorneorr YPZPYZB0A0
36 35 orcomd YPZPYZA0B0
37 36 adantr YPZPYZR+0DA0B0
38 simpr YPZPYZR+0DR+0D
39 eqid pP|Ap1+Bp2=C=pP|Ap1+Bp2=C
40 1 2 3 4 5 6 7 39 itsclc0 ABCA0B0R+0DX0˙SRXpP|Ap1+Bp2=CX1=AC+BDQX2=BCADQX1=ACBDQX2=BC+ADQ
41 22 29 34 37 38 40 syl311anc YPZPYZR+0DX0˙SRXpP|Ap1+Bp2=CX1=AC+BDQX2=BCADQX1=ACBDQX2=BC+ADQ
42 15 41 sylbid YPZPYZR+0DX0˙SRXYLZX1=AC+BDQX2=BCADQX1=ACBDQX2=BC+ADQ