Description: The intersection points of a line through two different points Y and Z and a circle around the origin, using the definition of a line in a two dimensional Euclidean space. (Contributed by AV, 25-Feb-2023) (Proof shortened by AV, 16-May-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | itsclc0.i | |
|
itsclc0.e | |
||
itsclc0.p | |
||
itsclc0.s | |
||
itsclc0.0 | |
||
itsclc0.q | |
||
itsclc0.d | |
||
itsclinecirc0.l | |
||
itsclinecirc0.a | |
||
itsclinecirc0.b | |
||
itsclinecirc0.c | |
||
Assertion | itsclinecirc0 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | itsclc0.i | |
|
2 | itsclc0.e | |
|
3 | itsclc0.p | |
|
4 | itsclc0.s | |
|
5 | itsclc0.0 | |
|
6 | itsclc0.q | |
|
7 | itsclc0.d | |
|
8 | itsclinecirc0.l | |
|
9 | itsclinecirc0.a | |
|
10 | itsclinecirc0.b | |
|
11 | itsclinecirc0.c | |
|
12 | 1 2 3 8 9 10 11 | rrx2linest2 | |
13 | 12 | adantr | |
14 | 13 | eleq2d | |
15 | 14 | anbi2d | |
16 | 1 3 | rrx2pyel | |
17 | 16 | 3ad2ant1 | |
18 | 1 3 | rrx2pyel | |
19 | 18 | 3ad2ant2 | |
20 | 17 19 | resubcld | |
21 | 9 20 | eqeltrid | |
22 | 21 | adantr | |
23 | 1 3 | rrx2pxel | |
24 | 23 | 3ad2ant2 | |
25 | 1 3 | rrx2pxel | |
26 | 25 | 3ad2ant1 | |
27 | 24 26 | resubcld | |
28 | 10 27 | eqeltrid | |
29 | 28 | adantr | |
30 | 17 24 | remulcld | |
31 | 26 19 | remulcld | |
32 | 30 31 | resubcld | |
33 | 11 32 | eqeltrid | |
34 | 33 | adantr | |
35 | 1 3 10 9 | rrx2pnedifcoorneorr | |
36 | 35 | orcomd | |
37 | 36 | adantr | |
38 | simpr | |
|
39 | eqid | |
|
40 | 1 2 3 4 5 6 7 39 | itsclc0 | |
41 | 22 29 34 37 38 40 | syl311anc | |
42 | 15 41 | sylbid | |