Metamath Proof Explorer


Theorem k0004val0

Description: The topological simplex of dimension 0 is a singleton. (Contributed by RP, 2-Apr-2021)

Ref Expression
Hypothesis k0004.a A = n 0 t 0 1 1 n + 1 | k = 1 n + 1 t k = 1
Assertion k0004val0 A 0 = 1 1

Proof

Step Hyp Ref Expression
1 k0004.a A = n 0 t 0 1 1 n + 1 | k = 1 n + 1 t k = 1
2 0nn0 0 0
3 1 k0004val 0 0 A 0 = t 0 1 1 0 + 1 | k = 1 0 + 1 t k = 1
4 2 3 ax-mp A 0 = t 0 1 1 0 + 1 | k = 1 0 + 1 t k = 1
5 0p1e1 0 + 1 = 1
6 5 oveq2i 1 0 + 1 = 1 1
7 1z 1
8 fzsn 1 1 1 = 1
9 7 8 ax-mp 1 1 = 1
10 6 9 eqtri 1 0 + 1 = 1
11 10 oveq2i 0 1 1 0 + 1 = 0 1 1
12 11 rabeqi t 0 1 1 0 + 1 | k = 1 0 + 1 t k = 1 = t 0 1 1 | k = 1 0 + 1 t k = 1
13 10 sumeq1i k = 1 0 + 1 t k = k 1 t k
14 elmapi t 0 1 1 t : 1 0 1
15 fsn2g 1 t : 1 0 1 t 1 0 1 t = 1 t 1
16 7 15 ax-mp t : 1 0 1 t 1 0 1 t = 1 t 1
17 16 biimpi t : 1 0 1 t 1 0 1 t = 1 t 1
18 unitssre 0 1
19 ax-resscn
20 18 19 sstri 0 1
21 20 sseli t 1 0 1 t 1
22 21 adantr t 1 0 1 t = 1 t 1 t 1
23 14 17 22 3syl t 0 1 1 t 1
24 fveq2 k = 1 t k = t 1
25 24 sumsn 1 t 1 k 1 t k = t 1
26 7 23 25 sylancr t 0 1 1 k 1 t k = t 1
27 13 26 syl5eq t 0 1 1 k = 1 0 + 1 t k = t 1
28 27 eqeq1d t 0 1 1 k = 1 0 + 1 t k = 1 t 1 = 1
29 28 rabbiia t 0 1 1 | k = 1 0 + 1 t k = 1 = t 0 1 1 | t 1 = 1
30 12 29 eqtri t 0 1 1 0 + 1 | k = 1 0 + 1 t k = 1 = t 0 1 1 | t 1 = 1
31 rabeqsn t 0 1 1 | t 1 = 1 = 1 1 t t 0 1 1 t 1 = 1 t = 1 1
32 ovex 0 1 V
33 1elunit 1 0 1
34 k0004lem3 1 0 1 V 1 0 1 t 0 1 1 t 1 = 1 t = 1 1
35 7 32 33 34 mp3an t 0 1 1 t 1 = 1 t = 1 1
36 31 35 mpgbir t 0 1 1 | t 1 = 1 = 1 1
37 30 36 eqtri t 0 1 1 0 + 1 | k = 1 0 + 1 t k = 1 = 1 1
38 4 37 eqtri A 0 = 1 1