Metamath Proof Explorer


Theorem k0004val0

Description: The topological simplex of dimension 0 is a singleton. (Contributed by RP, 2-Apr-2021)

Ref Expression
Hypothesis k0004.a A=n0t011n+1|k=1n+1tk=1
Assertion k0004val0 A0=11

Proof

Step Hyp Ref Expression
1 k0004.a A=n0t011n+1|k=1n+1tk=1
2 0nn0 00
3 1 k0004val 00A0=t0110+1|k=10+1tk=1
4 2 3 ax-mp A0=t0110+1|k=10+1tk=1
5 0p1e1 0+1=1
6 5 oveq2i 10+1=11
7 1z 1
8 fzsn 111=1
9 7 8 ax-mp 11=1
10 6 9 eqtri 10+1=1
11 10 oveq2i 0110+1=011
12 11 rabeqi t0110+1|k=10+1tk=1=t011|k=10+1tk=1
13 10 sumeq1i k=10+1tk=k1tk
14 elmapi t011t:101
15 fsn2g 1t:101t101t=1t1
16 7 15 ax-mp t:101t101t=1t1
17 16 biimpi t:101t101t=1t1
18 unitssre 01
19 ax-resscn
20 18 19 sstri 01
21 20 sseli t101t1
22 21 adantr t101t=1t1t1
23 14 17 22 3syl t011t1
24 fveq2 k=1tk=t1
25 24 sumsn 1t1k1tk=t1
26 7 23 25 sylancr t011k1tk=t1
27 13 26 eqtrid t011k=10+1tk=t1
28 27 eqeq1d t011k=10+1tk=1t1=1
29 28 rabbiia t011|k=10+1tk=1=t011|t1=1
30 12 29 eqtri t0110+1|k=10+1tk=1=t011|t1=1
31 rabeqsn t011|t1=1=11tt011t1=1t=11
32 ovex 01V
33 1elunit 101
34 k0004lem3 101V101t011t1=1t=11
35 7 32 33 34 mp3an t011t1=1t=11
36 31 35 mpgbir t011|t1=1=11
37 30 36 eqtri t0110+1|k=10+1tk=1=11
38 4 37 eqtri A0=11