Description: The topological simplex of dimension 0 is a singleton. (Contributed by RP, 2-Apr-2021)
Ref | Expression | ||
---|---|---|---|
Hypothesis | k0004.a | |
|
Assertion | k0004val0 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | k0004.a | |
|
2 | 0nn0 | |
|
3 | 1 | k0004val | |
4 | 2 3 | ax-mp | |
5 | 0p1e1 | |
|
6 | 5 | oveq2i | |
7 | 1z | |
|
8 | fzsn | |
|
9 | 7 8 | ax-mp | |
10 | 6 9 | eqtri | |
11 | 10 | oveq2i | |
12 | 11 | rabeqi | |
13 | 10 | sumeq1i | |
14 | elmapi | |
|
15 | fsn2g | |
|
16 | 7 15 | ax-mp | |
17 | 16 | biimpi | |
18 | unitssre | |
|
19 | ax-resscn | |
|
20 | 18 19 | sstri | |
21 | 20 | sseli | |
22 | 21 | adantr | |
23 | 14 17 22 | 3syl | |
24 | fveq2 | |
|
25 | 24 | sumsn | |
26 | 7 23 25 | sylancr | |
27 | 13 26 | eqtrid | |
28 | 27 | eqeq1d | |
29 | 28 | rabbiia | |
30 | 12 29 | eqtri | |
31 | rabeqsn | |
|
32 | ovex | |
|
33 | 1elunit | |
|
34 | k0004lem3 | |
|
35 | 7 32 33 34 | mp3an | |
36 | 31 35 | mpgbir | |
37 | 30 36 | eqtri | |
38 | 4 37 | eqtri | |