Metamath Proof Explorer


Theorem kbass6

Description: Dirac bra-ket associative law ( | A >. <. B | ) ( | C >. <. D | ) = | A >. ( <. B | ( | C >. <. D | ) ) . (Contributed by NM, 30-May-2006) (New usage is discouraged.)

Ref Expression
Assertion kbass6 ABCDAketbraBCketbraD=Aketbrabra-1braBCketbraD

Proof

Step Hyp Ref Expression
1 kbass5 ABCDAketbraBCketbraD=AketbraBCketbraD
2 kbval ABCAketbraBC=CihBA
3 2 3expa ABCAketbraBC=CihBA
4 3 adantrr ABCDAketbraBC=CihBA
5 4 oveq1d ABCDAketbraBCketbraD=CihBAketbraD
6 hicl CBCihB
7 kbmul CihBADCihBAketbraD=AketbraCihBD
8 6 7 syl3an1 CBADCihBAketbraD=AketbraCihBD
9 8 3exp CBADCihBAketbraD=AketbraCihBD
10 9 ex CBADCihBAketbraD=AketbraCihBD
11 10 com13 ABCDCihBAketbraD=AketbraCihBD
12 11 imp43 ABCDCihBAketbraD=AketbraCihBD
13 bracl BCbraBC
14 bracnln DbraDLinFnContFn
15 cnvbramul braBCbraDLinFnContFnbra-1braBC·fnbraD=braBCbra-1braD
16 13 14 15 syl2an BCDbra-1braBC·fnbraD=braBCbra-1braD
17 braval BCbraBC=CihB
18 17 fveq2d BCbraBC=CihB
19 cnvbrabra Dbra-1braD=D
20 18 19 oveqan12d BCDbraBCbra-1braD=CihBD
21 16 20 eqtr2d BCDCihBD=bra-1braBC·fnbraD
22 21 anasss BCDCihBD=bra-1braBC·fnbraD
23 kbass2 BCDbraBC·fnbraD=braBCketbraD
24 23 3expb BCDbraBC·fnbraD=braBCketbraD
25 24 fveq2d BCDbra-1braBC·fnbraD=bra-1braBCketbraD
26 22 25 eqtr2d BCDbra-1braBCketbraD=CihBD
27 26 adantll ABCDbra-1braBCketbraD=CihBD
28 27 oveq2d ABCDAketbrabra-1braBCketbraD=AketbraCihBD
29 12 28 eqtr4d ABCDCihBAketbraD=Aketbrabra-1braBCketbraD
30 1 5 29 3eqtrd ABCDAketbraBCketbraD=Aketbrabra-1braBCketbraD