| Step |
Hyp |
Ref |
Expression |
| 1 |
|
kelac2.s |
|
| 2 |
|
kelac2.z |
|
| 3 |
|
kelac2.k |
|
| 4 |
|
kelac2lem |
|
| 5 |
|
cmptop |
|
| 6 |
1 4 5
|
3syl |
|
| 7 |
|
uncom |
|
| 8 |
7
|
difeq1i |
|
| 9 |
|
difun2 |
|
| 10 |
8 9
|
eqtri |
|
| 11 |
|
snex |
|
| 12 |
|
uniprg |
|
| 13 |
1 11 12
|
sylancl |
|
| 14 |
13
|
difeq1d |
|
| 15 |
|
incom |
|
| 16 |
|
pwuninel |
|
| 17 |
16
|
a1i |
|
| 18 |
|
disjsn |
|
| 19 |
17 18
|
sylibr |
|
| 20 |
15 19
|
eqtrid |
|
| 21 |
|
disj3 |
|
| 22 |
20 21
|
sylib |
|
| 23 |
10 14 22
|
3eqtr4a |
|
| 24 |
|
prex |
|
| 25 |
|
bastg |
|
| 26 |
24 25
|
mp1i |
|
| 27 |
11
|
prid2 |
|
| 28 |
27
|
a1i |
|
| 29 |
26 28
|
sseldd |
|
| 30 |
23 29
|
eqeltrd |
|
| 31 |
|
prid1g |
|
| 32 |
|
elssuni |
|
| 33 |
1 31 32
|
3syl |
|
| 34 |
|
unitg |
|
| 35 |
24 34
|
ax-mp |
|
| 36 |
35
|
eqcomi |
|
| 37 |
36
|
iscld2 |
|
| 38 |
6 33 37
|
syl2anc |
|
| 39 |
30 38
|
mpbird |
|
| 40 |
|
f1oi |
|
| 41 |
40
|
a1i |
|
| 42 |
|
elssuni |
|
| 43 |
27 42
|
mp1i |
|
| 44 |
|
uniexg |
|
| 45 |
|
pwexg |
|
| 46 |
|
snidg |
|
| 47 |
1 44 45 46
|
4syl |
|
| 48 |
43 47
|
sseldd |
|
| 49 |
48 35
|
eleqtrrdi |
|
| 50 |
2 6 39 41 49 3
|
kelac1 |
|