| Step |
Hyp |
Ref |
Expression |
| 1 |
|
kelac2.s |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝑆 ∈ 𝑉 ) |
| 2 |
|
kelac2.z |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝑆 ≠ ∅ ) |
| 3 |
|
kelac2.k |
⊢ ( 𝜑 → ( ∏t ‘ ( 𝑥 ∈ 𝐼 ↦ ( topGen ‘ { 𝑆 , { 𝒫 ∪ 𝑆 } } ) ) ) ∈ Comp ) |
| 4 |
|
kelac2lem |
⊢ ( 𝑆 ∈ 𝑉 → ( topGen ‘ { 𝑆 , { 𝒫 ∪ 𝑆 } } ) ∈ Comp ) |
| 5 |
|
cmptop |
⊢ ( ( topGen ‘ { 𝑆 , { 𝒫 ∪ 𝑆 } } ) ∈ Comp → ( topGen ‘ { 𝑆 , { 𝒫 ∪ 𝑆 } } ) ∈ Top ) |
| 6 |
1 4 5
|
3syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( topGen ‘ { 𝑆 , { 𝒫 ∪ 𝑆 } } ) ∈ Top ) |
| 7 |
|
uncom |
⊢ ( 𝑆 ∪ { 𝒫 ∪ 𝑆 } ) = ( { 𝒫 ∪ 𝑆 } ∪ 𝑆 ) |
| 8 |
7
|
difeq1i |
⊢ ( ( 𝑆 ∪ { 𝒫 ∪ 𝑆 } ) ∖ 𝑆 ) = ( ( { 𝒫 ∪ 𝑆 } ∪ 𝑆 ) ∖ 𝑆 ) |
| 9 |
|
difun2 |
⊢ ( ( { 𝒫 ∪ 𝑆 } ∪ 𝑆 ) ∖ 𝑆 ) = ( { 𝒫 ∪ 𝑆 } ∖ 𝑆 ) |
| 10 |
8 9
|
eqtri |
⊢ ( ( 𝑆 ∪ { 𝒫 ∪ 𝑆 } ) ∖ 𝑆 ) = ( { 𝒫 ∪ 𝑆 } ∖ 𝑆 ) |
| 11 |
|
snex |
⊢ { 𝒫 ∪ 𝑆 } ∈ V |
| 12 |
|
uniprg |
⊢ ( ( 𝑆 ∈ 𝑉 ∧ { 𝒫 ∪ 𝑆 } ∈ V ) → ∪ { 𝑆 , { 𝒫 ∪ 𝑆 } } = ( 𝑆 ∪ { 𝒫 ∪ 𝑆 } ) ) |
| 13 |
1 11 12
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ∪ { 𝑆 , { 𝒫 ∪ 𝑆 } } = ( 𝑆 ∪ { 𝒫 ∪ 𝑆 } ) ) |
| 14 |
13
|
difeq1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( ∪ { 𝑆 , { 𝒫 ∪ 𝑆 } } ∖ 𝑆 ) = ( ( 𝑆 ∪ { 𝒫 ∪ 𝑆 } ) ∖ 𝑆 ) ) |
| 15 |
|
incom |
⊢ ( { 𝒫 ∪ 𝑆 } ∩ 𝑆 ) = ( 𝑆 ∩ { 𝒫 ∪ 𝑆 } ) |
| 16 |
|
pwuninel |
⊢ ¬ 𝒫 ∪ 𝑆 ∈ 𝑆 |
| 17 |
16
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ¬ 𝒫 ∪ 𝑆 ∈ 𝑆 ) |
| 18 |
|
disjsn |
⊢ ( ( 𝑆 ∩ { 𝒫 ∪ 𝑆 } ) = ∅ ↔ ¬ 𝒫 ∪ 𝑆 ∈ 𝑆 ) |
| 19 |
17 18
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝑆 ∩ { 𝒫 ∪ 𝑆 } ) = ∅ ) |
| 20 |
15 19
|
eqtrid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( { 𝒫 ∪ 𝑆 } ∩ 𝑆 ) = ∅ ) |
| 21 |
|
disj3 |
⊢ ( ( { 𝒫 ∪ 𝑆 } ∩ 𝑆 ) = ∅ ↔ { 𝒫 ∪ 𝑆 } = ( { 𝒫 ∪ 𝑆 } ∖ 𝑆 ) ) |
| 22 |
20 21
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → { 𝒫 ∪ 𝑆 } = ( { 𝒫 ∪ 𝑆 } ∖ 𝑆 ) ) |
| 23 |
10 14 22
|
3eqtr4a |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( ∪ { 𝑆 , { 𝒫 ∪ 𝑆 } } ∖ 𝑆 ) = { 𝒫 ∪ 𝑆 } ) |
| 24 |
|
prex |
⊢ { 𝑆 , { 𝒫 ∪ 𝑆 } } ∈ V |
| 25 |
|
bastg |
⊢ ( { 𝑆 , { 𝒫 ∪ 𝑆 } } ∈ V → { 𝑆 , { 𝒫 ∪ 𝑆 } } ⊆ ( topGen ‘ { 𝑆 , { 𝒫 ∪ 𝑆 } } ) ) |
| 26 |
24 25
|
mp1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → { 𝑆 , { 𝒫 ∪ 𝑆 } } ⊆ ( topGen ‘ { 𝑆 , { 𝒫 ∪ 𝑆 } } ) ) |
| 27 |
11
|
prid2 |
⊢ { 𝒫 ∪ 𝑆 } ∈ { 𝑆 , { 𝒫 ∪ 𝑆 } } |
| 28 |
27
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → { 𝒫 ∪ 𝑆 } ∈ { 𝑆 , { 𝒫 ∪ 𝑆 } } ) |
| 29 |
26 28
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → { 𝒫 ∪ 𝑆 } ∈ ( topGen ‘ { 𝑆 , { 𝒫 ∪ 𝑆 } } ) ) |
| 30 |
23 29
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( ∪ { 𝑆 , { 𝒫 ∪ 𝑆 } } ∖ 𝑆 ) ∈ ( topGen ‘ { 𝑆 , { 𝒫 ∪ 𝑆 } } ) ) |
| 31 |
|
prid1g |
⊢ ( 𝑆 ∈ 𝑉 → 𝑆 ∈ { 𝑆 , { 𝒫 ∪ 𝑆 } } ) |
| 32 |
|
elssuni |
⊢ ( 𝑆 ∈ { 𝑆 , { 𝒫 ∪ 𝑆 } } → 𝑆 ⊆ ∪ { 𝑆 , { 𝒫 ∪ 𝑆 } } ) |
| 33 |
1 31 32
|
3syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝑆 ⊆ ∪ { 𝑆 , { 𝒫 ∪ 𝑆 } } ) |
| 34 |
|
unitg |
⊢ ( { 𝑆 , { 𝒫 ∪ 𝑆 } } ∈ V → ∪ ( topGen ‘ { 𝑆 , { 𝒫 ∪ 𝑆 } } ) = ∪ { 𝑆 , { 𝒫 ∪ 𝑆 } } ) |
| 35 |
24 34
|
ax-mp |
⊢ ∪ ( topGen ‘ { 𝑆 , { 𝒫 ∪ 𝑆 } } ) = ∪ { 𝑆 , { 𝒫 ∪ 𝑆 } } |
| 36 |
35
|
eqcomi |
⊢ ∪ { 𝑆 , { 𝒫 ∪ 𝑆 } } = ∪ ( topGen ‘ { 𝑆 , { 𝒫 ∪ 𝑆 } } ) |
| 37 |
36
|
iscld2 |
⊢ ( ( ( topGen ‘ { 𝑆 , { 𝒫 ∪ 𝑆 } } ) ∈ Top ∧ 𝑆 ⊆ ∪ { 𝑆 , { 𝒫 ∪ 𝑆 } } ) → ( 𝑆 ∈ ( Clsd ‘ ( topGen ‘ { 𝑆 , { 𝒫 ∪ 𝑆 } } ) ) ↔ ( ∪ { 𝑆 , { 𝒫 ∪ 𝑆 } } ∖ 𝑆 ) ∈ ( topGen ‘ { 𝑆 , { 𝒫 ∪ 𝑆 } } ) ) ) |
| 38 |
6 33 37
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝑆 ∈ ( Clsd ‘ ( topGen ‘ { 𝑆 , { 𝒫 ∪ 𝑆 } } ) ) ↔ ( ∪ { 𝑆 , { 𝒫 ∪ 𝑆 } } ∖ 𝑆 ) ∈ ( topGen ‘ { 𝑆 , { 𝒫 ∪ 𝑆 } } ) ) ) |
| 39 |
30 38
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝑆 ∈ ( Clsd ‘ ( topGen ‘ { 𝑆 , { 𝒫 ∪ 𝑆 } } ) ) ) |
| 40 |
|
f1oi |
⊢ ( I ↾ 𝑆 ) : 𝑆 –1-1-onto→ 𝑆 |
| 41 |
40
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( I ↾ 𝑆 ) : 𝑆 –1-1-onto→ 𝑆 ) |
| 42 |
|
elssuni |
⊢ ( { 𝒫 ∪ 𝑆 } ∈ { 𝑆 , { 𝒫 ∪ 𝑆 } } → { 𝒫 ∪ 𝑆 } ⊆ ∪ { 𝑆 , { 𝒫 ∪ 𝑆 } } ) |
| 43 |
27 42
|
mp1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → { 𝒫 ∪ 𝑆 } ⊆ ∪ { 𝑆 , { 𝒫 ∪ 𝑆 } } ) |
| 44 |
|
uniexg |
⊢ ( 𝑆 ∈ 𝑉 → ∪ 𝑆 ∈ V ) |
| 45 |
|
pwexg |
⊢ ( ∪ 𝑆 ∈ V → 𝒫 ∪ 𝑆 ∈ V ) |
| 46 |
|
snidg |
⊢ ( 𝒫 ∪ 𝑆 ∈ V → 𝒫 ∪ 𝑆 ∈ { 𝒫 ∪ 𝑆 } ) |
| 47 |
1 44 45 46
|
4syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝒫 ∪ 𝑆 ∈ { 𝒫 ∪ 𝑆 } ) |
| 48 |
43 47
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝒫 ∪ 𝑆 ∈ ∪ { 𝑆 , { 𝒫 ∪ 𝑆 } } ) |
| 49 |
48 35
|
eleqtrrdi |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝒫 ∪ 𝑆 ∈ ∪ ( topGen ‘ { 𝑆 , { 𝒫 ∪ 𝑆 } } ) ) |
| 50 |
2 6 39 41 49 3
|
kelac1 |
⊢ ( 𝜑 → X 𝑥 ∈ 𝐼 𝑆 ≠ ∅ ) |