| Step |
Hyp |
Ref |
Expression |
| 1 |
|
vex |
|
| 2 |
1
|
dmex |
|
| 3 |
2
|
a1i |
|
| 4 |
|
simpr |
|
| 5 |
|
fvex |
|
| 6 |
5
|
uniex |
|
| 7 |
|
acufl |
|
| 8 |
7
|
adantr |
|
| 9 |
6 8
|
eleqtrrid |
|
| 10 |
|
simpl |
|
| 11 |
|
dfac10 |
|
| 12 |
10 11
|
sylib |
|
| 13 |
6 12
|
eleqtrrid |
|
| 14 |
9 13
|
elind |
|
| 15 |
|
eqid |
|
| 16 |
|
eqid |
|
| 17 |
15 16
|
ptcmpg |
|
| 18 |
3 4 14 17
|
syl3anc |
|
| 19 |
18
|
ex |
|
| 20 |
19
|
alrimiv |
|
| 21 |
|
fvex |
|
| 22 |
|
kelac2lem |
|
| 23 |
21 22
|
mp1i |
|
| 24 |
23
|
fmpttd |
|
| 25 |
24
|
ffdmd |
|
| 26 |
|
vex |
|
| 27 |
26
|
dmex |
|
| 28 |
27
|
mptex |
|
| 29 |
|
id |
|
| 30 |
|
dmeq |
|
| 31 |
29 30
|
feq12d |
|
| 32 |
|
fveq2 |
|
| 33 |
32
|
eleq1d |
|
| 34 |
31 33
|
imbi12d |
|
| 35 |
28 34
|
spcv |
|
| 36 |
25 35
|
syl5com |
|
| 37 |
|
fvex |
|
| 38 |
37
|
a1i |
|
| 39 |
|
df-nel |
|
| 40 |
39
|
biimpi |
|
| 41 |
40
|
ad2antlr |
|
| 42 |
|
fvelrn |
|
| 43 |
42
|
adantlr |
|
| 44 |
|
eleq1 |
|
| 45 |
43 44
|
syl5ibcom |
|
| 46 |
45
|
necon3bd |
|
| 47 |
41 46
|
mpd |
|
| 48 |
47
|
adantlr |
|
| 49 |
|
fveq2 |
|
| 50 |
49
|
unieqd |
|
| 51 |
50
|
pweqd |
|
| 52 |
51
|
sneqd |
|
| 53 |
49 52
|
preq12d |
|
| 54 |
53
|
fveq2d |
|
| 55 |
54
|
cbvmptv |
|
| 56 |
55
|
fveq2i |
|
| 57 |
56
|
eleq1i |
|
| 58 |
57
|
biimpi |
|
| 59 |
58
|
adantl |
|
| 60 |
38 48 59
|
kelac2 |
|
| 61 |
60
|
ex |
|
| 62 |
36 61
|
syldc |
|
| 63 |
62
|
alrimiv |
|
| 64 |
|
dfac9 |
|
| 65 |
63 64
|
sylibr |
|
| 66 |
20 65
|
impbii |
|