Description: Tychonoff's theorem: The product of compact spaces is compact. The choice principles needed are encoded in the last hypothesis: the base set of the product must be well-orderable and satisfy the ultrafilter lemma. Both these assumptions are satisfied if ~P ~P X is well-orderable, so if we assume the Axiom of Choice we can eliminate them (see ptcmp ). (Contributed by Mario Carneiro, 27-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ptcmpg.1 | |
|
ptcmpg.2 | |
||
Assertion | ptcmpg | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ptcmpg.1 | |
|
2 | ptcmpg.2 | |
|
3 | nfcv | |
|
4 | nfcv | |
|
5 | nfcv | |
|
6 | nfcv | |
|
7 | nfcv | |
|
8 | nfcv | |
|
9 | fveq2 | |
|
10 | fveq2 | |
|
11 | 10 | mpteq2dv | |
12 | 11 | cnveqd | |
13 | 12 | imaeq1d | |
14 | imaeq2 | |
|
15 | 13 14 | sylan9eq | |
16 | 3 4 5 6 7 8 9 15 | cbvmpox | |
17 | fveq2 | |
|
18 | 17 | unieqd | |
19 | 18 | cbvixpv | |
20 | simp1 | |
|
21 | simp2 | |
|
22 | cmptop | |
|
23 | 22 | ssriv | |
24 | fss | |
|
25 | 21 23 24 | sylancl | |
26 | 1 | ptuni | |
27 | 20 25 26 | syl2anc | |
28 | 27 2 | eqtr4di | |
29 | simp3 | |
|
30 | 28 29 | eqeltrd | |
31 | 16 19 20 21 30 | ptcmplem5 | |
32 | 1 31 | eqeltrid | |