Metamath Proof Explorer


Theorem ptcmpg

Description: Tychonoff's theorem: The product of compact spaces is compact. The choice principles needed are encoded in the last hypothesis: the base set of the product must be well-orderable and satisfy the ultrafilter lemma. Both these assumptions are satisfied if ~P ~P X is well-orderable, so if we assume the Axiom of Choice we can eliminate them (see ptcmp ). (Contributed by Mario Carneiro, 27-Aug-2015)

Ref Expression
Hypotheses ptcmpg.1 J = 𝑡 F
ptcmpg.2 X = J
Assertion ptcmpg A V F : A Comp X UFL dom card J Comp

Proof

Step Hyp Ref Expression
1 ptcmpg.1 J = 𝑡 F
2 ptcmpg.2 X = J
3 nfcv _ k F a
4 nfcv _ a F k
5 nfcv _ k w n A F n w a -1 b
6 nfcv _ u w n A F n w a -1 b
7 nfcv _ a w n A F n w k -1 u
8 nfcv _ b w n A F n w k -1 u
9 fveq2 a = k F a = F k
10 fveq2 a = k w a = w k
11 10 mpteq2dv a = k w n A F n w a = w n A F n w k
12 11 cnveqd a = k w n A F n w a -1 = w n A F n w k -1
13 12 imaeq1d a = k w n A F n w a -1 b = w n A F n w k -1 b
14 imaeq2 b = u w n A F n w k -1 b = w n A F n w k -1 u
15 13 14 sylan9eq a = k b = u w n A F n w a -1 b = w n A F n w k -1 u
16 3 4 5 6 7 8 9 15 cbvmpox a A , b F a w n A F n w a -1 b = k A , u F k w n A F n w k -1 u
17 fveq2 n = m F n = F m
18 17 unieqd n = m F n = F m
19 18 cbvixpv n A F n = m A F m
20 simp1 A V F : A Comp X UFL dom card A V
21 simp2 A V F : A Comp X UFL dom card F : A Comp
22 cmptop k Comp k Top
23 22 ssriv Comp Top
24 fss F : A Comp Comp Top F : A Top
25 21 23 24 sylancl A V F : A Comp X UFL dom card F : A Top
26 1 ptuni A V F : A Top n A F n = J
27 20 25 26 syl2anc A V F : A Comp X UFL dom card n A F n = J
28 27 2 eqtr4di A V F : A Comp X UFL dom card n A F n = X
29 simp3 A V F : A Comp X UFL dom card X UFL dom card
30 28 29 eqeltrd A V F : A Comp X UFL dom card n A F n UFL dom card
31 16 19 20 21 30 ptcmplem5 A V F : A Comp X UFL dom card 𝑡 F Comp
32 1 31 eqeltrid A V F : A Comp X UFL dom card J Comp