Metamath Proof Explorer


Theorem ptcmpg

Description: Tychonoff's theorem: The product of compact spaces is compact. The choice principles needed are encoded in the last hypothesis: the base set of the product must be well-orderable and satisfy the ultrafilter lemma. Both these assumptions are satisfied if ~P ~P X is well-orderable, so if we assume the Axiom of Choice we can eliminate them (see ptcmp ). (Contributed by Mario Carneiro, 27-Aug-2015)

Ref Expression
Hypotheses ptcmpg.1 J=𝑡F
ptcmpg.2 X=J
Assertion ptcmpg AVF:ACompXUFLdomcardJComp

Proof

Step Hyp Ref Expression
1 ptcmpg.1 J=𝑡F
2 ptcmpg.2 X=J
3 nfcv _kFa
4 nfcv _aFk
5 nfcv _kwnAFnwa-1b
6 nfcv _uwnAFnwa-1b
7 nfcv _awnAFnwk-1u
8 nfcv _bwnAFnwk-1u
9 fveq2 a=kFa=Fk
10 fveq2 a=kwa=wk
11 10 mpteq2dv a=kwnAFnwa=wnAFnwk
12 11 cnveqd a=kwnAFnwa-1=wnAFnwk-1
13 12 imaeq1d a=kwnAFnwa-1b=wnAFnwk-1b
14 imaeq2 b=uwnAFnwk-1b=wnAFnwk-1u
15 13 14 sylan9eq a=kb=uwnAFnwa-1b=wnAFnwk-1u
16 3 4 5 6 7 8 9 15 cbvmpox aA,bFawnAFnwa-1b=kA,uFkwnAFnwk-1u
17 fveq2 n=mFn=Fm
18 17 unieqd n=mFn=Fm
19 18 cbvixpv nAFn=mAFm
20 simp1 AVF:ACompXUFLdomcardAV
21 simp2 AVF:ACompXUFLdomcardF:AComp
22 cmptop kCompkTop
23 22 ssriv CompTop
24 fss F:ACompCompTopF:ATop
25 21 23 24 sylancl AVF:ACompXUFLdomcardF:ATop
26 1 ptuni AVF:ATopnAFn=J
27 20 25 26 syl2anc AVF:ACompXUFLdomcardnAFn=J
28 27 2 eqtr4di AVF:ACompXUFLdomcardnAFn=X
29 simp3 AVF:ACompXUFLdomcardXUFLdomcard
30 28 29 eqeltrd AVF:ACompXUFLdomcardnAFnUFLdomcard
31 16 19 20 21 30 ptcmplem5 AVF:ACompXUFLdomcard𝑡FComp
32 1 31 eqeltrid AVF:ACompXUFLdomcardJComp