Metamath Proof Explorer


Theorem kelac2lem

Description: Lemma for kelac2 and dfac21 : knob topologies are compact. (Contributed by Stefan O'Rear, 22-Feb-2015)

Ref Expression
Assertion kelac2lem SVtopGenS𝒫SComp

Proof

Step Hyp Ref Expression
1 prex S𝒫SV
2 vex xV
3 2 elpr xS𝒫Sx=Sx=𝒫S
4 vex yV
5 4 elpr yS𝒫Sy=Sy=𝒫S
6 eqtr3 x=Sy=Sx=y
7 6 orcd x=Sy=Sx=yxy=
8 ineq12 x=𝒫Sy=Sxy=𝒫SS
9 incom 𝒫SS=S𝒫S
10 pwuninel ¬𝒫SS
11 disjsn S𝒫S=¬𝒫SS
12 10 11 mpbir S𝒫S=
13 9 12 eqtri 𝒫SS=
14 8 13 eqtrdi x=𝒫Sy=Sxy=
15 14 olcd x=𝒫Sy=Sx=yxy=
16 ineq12 x=Sy=𝒫Sxy=S𝒫S
17 16 12 eqtrdi x=Sy=𝒫Sxy=
18 17 olcd x=Sy=𝒫Sx=yxy=
19 eqtr3 x=𝒫Sy=𝒫Sx=y
20 19 orcd x=𝒫Sy=𝒫Sx=yxy=
21 7 15 18 20 ccase x=Sx=𝒫Sy=Sy=𝒫Sx=yxy=
22 3 5 21 syl2anb xS𝒫SyS𝒫Sx=yxy=
23 22 rgen2 xS𝒫SyS𝒫Sx=yxy=
24 baspartn S𝒫SVxS𝒫SyS𝒫Sx=yxy=S𝒫STopBases
25 1 23 24 mp2an S𝒫STopBases
26 tgcl S𝒫STopBasestopGenS𝒫STop
27 25 26 mp1i SVtopGenS𝒫STop
28 prfi S𝒫SFin
29 pwfi S𝒫SFin𝒫S𝒫SFin
30 28 29 mpbi 𝒫S𝒫SFin
31 tgdom S𝒫SVtopGenS𝒫S𝒫S𝒫S
32 1 31 ax-mp topGenS𝒫S𝒫S𝒫S
33 domfi 𝒫S𝒫SFintopGenS𝒫S𝒫S𝒫StopGenS𝒫SFin
34 30 32 33 mp2an topGenS𝒫SFin
35 34 a1i SVtopGenS𝒫SFin
36 27 35 elind SVtopGenS𝒫STopFin
37 fincmp topGenS𝒫STopFintopGenS𝒫SComp
38 36 37 syl SVtopGenS𝒫SComp