Metamath Proof Explorer


Theorem kgencmp

Description: The compact generator topology is the same as the original topology on compact subspaces. (Contributed by Mario Carneiro, 20-Mar-2015)

Ref Expression
Assertion kgencmp JTopJ𝑡KCompJ𝑡K=𝑘GenJ𝑡K

Proof

Step Hyp Ref Expression
1 kgenftop JTop𝑘GenJTop
2 1 adantr JTopJ𝑡KComp𝑘GenJTop
3 kgenss JTopJ𝑘GenJ
4 3 adantr JTopJ𝑡KCompJ𝑘GenJ
5 ssrest 𝑘GenJTopJ𝑘GenJJ𝑡K𝑘GenJ𝑡K
6 2 4 5 syl2anc JTopJ𝑡KCompJ𝑡K𝑘GenJ𝑡K
7 cmptop J𝑡KCompJ𝑡KTop
8 7 adantl JTopJ𝑡KCompJ𝑡KTop
9 restrcl J𝑡KTopJVKV
10 9 simprd J𝑡KTopKV
11 8 10 syl JTopJ𝑡KCompKV
12 restval 𝑘GenJTopKV𝑘GenJ𝑡K=ranx𝑘GenJxK
13 2 11 12 syl2anc JTopJ𝑡KComp𝑘GenJ𝑡K=ranx𝑘GenJxK
14 simpr JTopJ𝑡KCompx𝑘GenJx𝑘GenJ
15 simplr JTopJ𝑡KCompx𝑘GenJJ𝑡KComp
16 kgeni x𝑘GenJJ𝑡KCompxKJ𝑡K
17 14 15 16 syl2anc JTopJ𝑡KCompx𝑘GenJxKJ𝑡K
18 17 fmpttd JTopJ𝑡KCompx𝑘GenJxK:𝑘GenJJ𝑡K
19 18 frnd JTopJ𝑡KCompranx𝑘GenJxKJ𝑡K
20 13 19 eqsstrd JTopJ𝑡KComp𝑘GenJ𝑡KJ𝑡K
21 6 20 eqssd JTopJ𝑡KCompJ𝑡K=𝑘GenJ𝑡K