Description: Lemma for 5-quantifier AC of Kurt Maes, Th. 4, part of 3 => 4. (Contributed by NM, 26-Mar-2004)
Ref | Expression | ||
---|---|---|---|
Hypothesis | kmlem9.1 | |
|
Assertion | kmlem11 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | kmlem9.1 | |
|
2 | 1 | unieqi | |
3 | vex | |
|
4 | 3 | difexi | |
5 | 4 | dfiun2 | |
6 | 2 5 | eqtr4i | |
7 | 6 | ineq2i | |
8 | iunin2 | |
|
9 | 7 8 | eqtr4i | |
10 | undif2 | |
|
11 | snssi | |
|
12 | ssequn1 | |
|
13 | 11 12 | sylib | |
14 | 10 13 | eqtr2id | |
15 | 14 | iuneq1d | |
16 | iunxun | |
|
17 | vex | |
|
18 | difeq1 | |
|
19 | sneq | |
|
20 | 19 | difeq2d | |
21 | 20 | unieqd | |
22 | 21 | difeq2d | |
23 | 18 22 | eqtrd | |
24 | 23 | ineq2d | |
25 | 17 24 | iunxsn | |
26 | 25 | uneq1i | |
27 | 16 26 | eqtri | |
28 | eldifsni | |
|
29 | incom | |
|
30 | kmlem4 | |
|
31 | 29 30 | eqtrid | |
32 | 31 | ex | |
33 | 28 32 | syl5 | |
34 | 33 | ralrimiv | |
35 | iuneq2 | |
|
36 | 34 35 | syl | |
37 | iun0 | |
|
38 | 36 37 | eqtrdi | |
39 | 38 | uneq2d | |
40 | 27 39 | eqtrid | |
41 | 15 40 | eqtrd | |
42 | un0 | |
|
43 | indif | |
|
44 | 42 43 | eqtri | |
45 | 41 44 | eqtrdi | |
46 | 9 45 | eqtrid | |