Description: Lemma for 5-quantifier AC of Kurt Maes, Th. 4, part of 3 => 4. (Contributed by NM, 27-Mar-2004)
Ref | Expression | ||
---|---|---|---|
Hypothesis | kmlem9.1 | |
|
Assertion | kmlem12 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | kmlem9.1 | |
|
2 | difeq1 | |
|
3 | sneq | |
|
4 | 3 | difeq2d | |
5 | 4 | unieqd | |
6 | 5 | difeq2d | |
7 | 2 6 | eqtrd | |
8 | 7 | neeq1d | |
9 | 8 | cbvralvw | |
10 | 7 | ineq1d | |
11 | 10 | eleq2d | |
12 | 11 | eubidv | |
13 | 12 | cbvralvw | |
14 | 9 13 | imbi12i | |
15 | in12 | |
|
16 | incom | |
|
17 | 15 16 | eqtri | |
18 | 1 | kmlem11 | |
19 | 18 | ineq1d | |
20 | 17 19 | eqtr2id | |
21 | 20 | eleq2d | |
22 | 21 | eubidv | |
23 | ax-1 | |
|
24 | 22 23 | syl6bi | |
25 | 24 | ralimia | |
26 | 25 | imim2i | |
27 | 14 26 | sylbi | |
28 | 1 | raleqi | |
29 | df-ral | |
|
30 | vex | |
|
31 | eqeq1 | |
|
32 | 31 | rexbidv | |
33 | 30 32 | elab | |
34 | 33 | imbi1i | |
35 | r19.23v | |
|
36 | 34 35 | bitr4i | |
37 | 36 | albii | |
38 | ralcom4 | |
|
39 | vex | |
|
40 | 39 | difexi | |
41 | neeq1 | |
|
42 | ineq1 | |
|
43 | 42 | eleq2d | |
44 | 43 | eubidv | |
45 | 41 44 | imbi12d | |
46 | 40 45 | ceqsalv | |
47 | 46 | ralbii | |
48 | 37 38 47 | 3bitr2i | |
49 | 28 29 48 | 3bitri | |
50 | ralim | |
|
51 | 49 50 | sylbi | |
52 | 27 51 | syl11 | |