Metamath Proof Explorer


Theorem kmlem12

Description: Lemma for 5-quantifier AC of Kurt Maes, Th. 4, part of 3 => 4. (Contributed by NM, 27-Mar-2004)

Ref Expression
Hypothesis kmlem9.1 A=u|txu=txt
Assertion kmlem12 zxzxzzAz∃!vvzyzxz∃!vvzyA

Proof

Step Hyp Ref Expression
1 kmlem9.1 A=u|txu=txt
2 difeq1 t=ztxt=zxt
3 sneq t=zt=z
4 3 difeq2d t=zxt=xz
5 4 unieqd t=zxt=xz
6 5 difeq2d t=zzxt=zxz
7 2 6 eqtrd t=ztxt=zxz
8 7 neeq1d t=ztxtzxz
9 8 cbvralvw txtxtzxzxz
10 7 ineq1d t=ztxty=zxzy
11 10 eleq2d t=zvtxtyvzxzy
12 11 eubidv t=z∃!vvtxty∃!vvzxzy
13 12 cbvralvw tx∃!vvtxtyzx∃!vvzxzy
14 9 13 imbi12i txtxttx∃!vvtxtyzxzxzzx∃!vvzxzy
15 in12 zyA=yzA
16 incom yzA=zAy
17 15 16 eqtri zyA=zAy
18 1 kmlem11 zxzA=zxz
19 18 ineq1d zxzAy=zxzy
20 17 19 eqtr2id zxzxzy=zyA
21 20 eleq2d zxvzxzyvzyA
22 21 eubidv zx∃!vvzxzy∃!vvzyA
23 ax-1 ∃!vvzyAz∃!vvzyA
24 22 23 syl6bi zx∃!vvzxzyz∃!vvzyA
25 24 ralimia zx∃!vvzxzyzxz∃!vvzyA
26 25 imim2i zxzxzzx∃!vvzxzyzxzxzzxz∃!vvzyA
27 14 26 sylbi txtxttx∃!vvtxtyzxzxzzxz∃!vvzyA
28 1 raleqi zAz∃!vvzyzu|txu=txtz∃!vvzy
29 df-ral zu|txu=txtz∃!vvzyzzu|txu=txtz∃!vvzy
30 vex zV
31 eqeq1 u=zu=txtz=txt
32 31 rexbidv u=ztxu=txttxz=txt
33 30 32 elab zu|txu=txttxz=txt
34 33 imbi1i zu|txu=txtz∃!vvzytxz=txtz∃!vvzy
35 r19.23v txz=txtz∃!vvzytxz=txtz∃!vvzy
36 34 35 bitr4i zu|txu=txtz∃!vvzytxz=txtz∃!vvzy
37 36 albii zzu|txu=txtz∃!vvzyztxz=txtz∃!vvzy
38 ralcom4 txzz=txtz∃!vvzyztxz=txtz∃!vvzy
39 vex tV
40 39 difexi txtV
41 neeq1 z=txtztxt
42 ineq1 z=txtzy=txty
43 42 eleq2d z=txtvzyvtxty
44 43 eubidv z=txt∃!vvzy∃!vvtxty
45 41 44 imbi12d z=txtz∃!vvzytxt∃!vvtxty
46 40 45 ceqsalv zz=txtz∃!vvzytxt∃!vvtxty
47 46 ralbii txzz=txtz∃!vvzytxtxt∃!vvtxty
48 37 38 47 3bitr2i zzu|txu=txtz∃!vvzytxtxt∃!vvtxty
49 28 29 48 3bitri zAz∃!vvzytxtxt∃!vvtxty
50 ralim txtxt∃!vvtxtytxtxttx∃!vvtxty
51 49 50 sylbi zAz∃!vvzytxtxttx∃!vvtxty
52 27 51 syl11 zxzxzzAz∃!vvzyzxz∃!vvzyA