Description: Lemma for 5-quantifier AC of Kurt Maes, Th. 4 1 <=> 4. (Contributed by NM, 5-Apr-2004)
Ref | Expression | ||
---|---|---|---|
Hypothesis | kmlem9.1 | |
|
Assertion | kmlem13 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | kmlem9.1 | |
|
2 | kmlem1 | |
|
3 | raleq | |
|
4 | 3 | raleqbi1dv | |
5 | raleq | |
|
6 | 5 | exbidv | |
7 | 4 6 | imbi12d | |
8 | 7 | cbvalvw | |
9 | 1 | kmlem10 | |
10 | ineq2 | |
|
11 | 10 | eleq2d | |
12 | 11 | eubidv | |
13 | 12 | imbi2d | |
14 | 13 | ralbidv | |
15 | 14 | cbvexvw | |
16 | kmlem3 | |
|
17 | ralinexa | |
|
18 | 17 | rexbii | |
19 | rexnal | |
|
20 | 16 18 19 | 3bitri | |
21 | 20 | ralbii | |
22 | ralnex | |
|
23 | 21 22 | bitri | |
24 | 1 | kmlem12 | |
25 | vex | |
|
26 | 25 | inex1 | |
27 | ineq2 | |
|
28 | 27 | eleq2d | |
29 | 28 | eubidv | |
30 | 29 | imbi2d | |
31 | 30 | ralbidv | |
32 | 26 31 | spcev | |
33 | 24 32 | syl6 | |
34 | 33 | exlimdv | |
35 | 34 | com12 | |
36 | 23 35 | biimtrrid | |
37 | 15 36 | sylbi | |
38 | 9 37 | syl | |
39 | 38 | alrimiv | |
40 | 8 39 | sylbi | |
41 | 2 40 | syl | |
42 | kmlem7 | |
|
43 | 42 | imim1i | |
44 | biimt | |
|
45 | 44 | ralimi | |
46 | ralbi | |
|
47 | 45 46 | syl | |
48 | 47 | exbidv | |
49 | 48 | adantr | |
50 | 49 | pm5.74i | |
51 | 43 50 | sylibr | |
52 | 51 | alimi | |
53 | 41 52 | impbii | |