Description: Lemma for 5-quantifier AC of Kurt Maes, Th. 4, part of 3 => 4. The right-hand side is part of the hypothesis of 4. (Contributed by NM, 25-Mar-2004)
Ref | Expression | ||
---|---|---|---|
Assertion | kmlem3 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfdif2 | |
|
2 | dfnul3 | |
|
3 | 2 | uneq2i | |
4 | un0 | |
|
5 | unrab | |
|
6 | 3 4 5 | 3eqtr3i | |
7 | ianor | |
|
8 | eluni | |
|
9 | 8 | anbi1i | |
10 | df-rex | |
|
11 | elin | |
|
12 | 11 | anbi2i | |
13 | df-an | |
|
14 | 12 13 | bitr3i | |
15 | 14 | anbi2i | |
16 | eldifsn | |
|
17 | necom | |
|
18 | 17 | anbi2i | |
19 | 16 18 | bitri | |
20 | 19 | anbi2i | |
21 | ancom | |
|
22 | 21 | anbi2ci | |
23 | anass | |
|
24 | 20 22 23 | 3bitri | |
25 | an32 | |
|
26 | 24 25 | bitr3i | |
27 | 15 26 | bitr3i | |
28 | 27 | exbii | |
29 | 19.41v | |
|
30 | 10 28 29 | 3bitri | |
31 | rexnal | |
|
32 | 9 30 31 | 3bitr2ri | |
33 | 32 | con1bii | |
34 | 7 33 | bitr3i | |
35 | 34 | rabbii | |
36 | 1 6 35 | 3eqtri | |
37 | 36 | neeq1i | |
38 | rabn0 | |
|
39 | 37 38 | bitri | |