Metamath Proof Explorer


Theorem kmlem4

Description: Lemma for 5-quantifier AC of Kurt Maes, Th. 4, part of 3 => 4. (Contributed by NM, 26-Mar-2004)

Ref Expression
Assertion kmlem4 wxzwzxzw=

Proof

Step Hyp Ref Expression
1 elequ1 v=wvxwx
2 neeq2 v=wzvzw
3 1 2 anbi12d v=wvxzvwxzw
4 elequ2 v=wyvyw
5 4 notbid v=w¬yv¬yw
6 3 5 imbi12d v=wvxzv¬yvwxzw¬yw
7 6 spvv vvxzv¬yvwxzw¬yw
8 eldif yzxzyz¬yxz
9 simpr yz¬yxz¬yxz
10 eluni yxzvyvvxz
11 10 notbii ¬yxz¬vyvvxz
12 alnex v¬yvvxz¬vyvvxz
13 con2b yv¬vxzvxz¬yv
14 imnan yv¬vxz¬yvvxz
15 eldifsn vxzvxvz
16 necom vzzv
17 16 anbi2i vxvzvxzv
18 15 17 bitri vxzvxzv
19 18 imbi1i vxz¬yvvxzv¬yv
20 13 14 19 3bitr3i ¬yvvxzvxzv¬yv
21 20 albii v¬yvvxzvvxzv¬yv
22 11 12 21 3bitr2i ¬yxzvvxzv¬yv
23 9 22 sylib yz¬yxzvvxzv¬yv
24 8 23 sylbi yzxzvvxzv¬yv
25 7 24 syl11 wxzwyzxz¬yw
26 25 ralrimiv wxzwyzxz¬yw
27 disj zxzw=yzxz¬yw
28 26 27 sylibr wxzwzxzw=