Metamath Proof Explorer


Theorem knoppndvlem12

Description: Lemma for knoppndv . (Contributed by Asger C. Ipsen, 29-Jun-2021) (Revised by Asger C. Ipsen, 5-Jul-2021)

Ref Expression
Hypotheses knoppndvlem12.c φC11
knoppndvlem12.n φN
knoppndvlem12.1 φ1<NC
Assertion knoppndvlem12 φ2 NC11<2 NC1

Proof

Step Hyp Ref Expression
1 knoppndvlem12.c φC11
2 knoppndvlem12.n φN
3 knoppndvlem12.1 φ1<NC
4 1red φ1
5 2re 2
6 5 a1i φ2
7 nnre NN
8 2 7 syl φN
9 6 8 remulcld φ2 N
10 1 knoppndvlem3 φCC<1
11 10 simpld φC
12 11 recnd φC
13 12 abscld φC
14 9 13 remulcld φ2 NC
15 1lt2 1<2
16 15 a1i φ1<2
17 2t1e2 21=2
18 17 eqcomi 2=21
19 18 a1i φ2=21
20 8 13 remulcld φNC
21 2rp 2+
22 21 a1i φ2+
23 4 20 22 3 ltmul2dd φ21<2NC
24 19 23 eqbrtrd φ2<2NC
25 6 recnd φ2
26 8 recnd φN
27 13 recnd φC
28 25 26 27 mulassd φ2 NC=2NC
29 28 eqcomd φ2NC=2 NC
30 24 29 breqtrd φ2<2 NC
31 4 6 14 16 30 lttrd φ1<2 NC
32 4 31 jca φ11<2 NC
33 ltne 11<2 NC2 NC1
34 32 33 syl φ2 NC1
35 1p1e2 1+1=2
36 35 a1i φ1+1=2
37 36 30 eqbrtrd φ1+1<2 NC
38 4 4 14 ltaddsubd φ1+1<2 NC1<2 NC1
39 37 38 mpbid φ1<2 NC1
40 34 39 jca φ2 NC11<2 NC1