Metamath Proof Explorer


Theorem konigsberglem4

Description: Lemma 4 for konigsberg : Vertices 0 , 1 , 3 are vertices of odd degree. (Contributed by Mario Carneiro, 11-Mar-2015) (Revised by AV, 28-Feb-2021)

Ref Expression
Hypotheses konigsberg.v V=03
konigsberg.e E=⟨“01020312122323”⟩
konigsberg.g G=VE
Assertion konigsberglem4 013xV|¬2VtxDegGx

Proof

Step Hyp Ref Expression
1 konigsberg.v V=03
2 konigsberg.e E=⟨“01020312122323”⟩
3 konigsberg.g G=VE
4 3nn0 30
5 0elfz 30003
6 4 5 ax-mp 003
7 6 1 eleqtrri 0V
8 n2dvds3 ¬23
9 1 2 3 konigsberglem1 VtxDegG0=3
10 9 breq2i 2VtxDegG023
11 8 10 mtbir ¬2VtxDegG0
12 fveq2 x=0VtxDegGx=VtxDegG0
13 12 breq2d x=02VtxDegGx2VtxDegG0
14 13 notbid x=0¬2VtxDegGx¬2VtxDegG0
15 14 elrab 0xV|¬2VtxDegGx0V¬2VtxDegG0
16 7 11 15 mpbir2an 0xV|¬2VtxDegGx
17 1nn0 10
18 1le3 13
19 elfz2nn0 103103013
20 17 4 18 19 mpbir3an 103
21 20 1 eleqtrri 1V
22 1 2 3 konigsberglem2 VtxDegG1=3
23 22 breq2i 2VtxDegG123
24 8 23 mtbir ¬2VtxDegG1
25 fveq2 x=1VtxDegGx=VtxDegG1
26 25 breq2d x=12VtxDegGx2VtxDegG1
27 26 notbid x=1¬2VtxDegGx¬2VtxDegG1
28 27 elrab 1xV|¬2VtxDegGx1V¬2VtxDegG1
29 21 24 28 mpbir2an 1xV|¬2VtxDegGx
30 3re 3
31 30 leidi 33
32 elfz2nn0 303303033
33 4 4 31 32 mpbir3an 303
34 33 1 eleqtrri 3V
35 1 2 3 konigsberglem3 VtxDegG3=3
36 35 breq2i 2VtxDegG323
37 8 36 mtbir ¬2VtxDegG3
38 fveq2 x=3VtxDegGx=VtxDegG3
39 38 breq2d x=32VtxDegGx2VtxDegG3
40 39 notbid x=3¬2VtxDegGx¬2VtxDegG3
41 40 elrab 3xV|¬2VtxDegGx3V¬2VtxDegG3
42 34 37 41 mpbir2an 3xV|¬2VtxDegGx
43 16 29 42 3pm3.2i 0xV|¬2VtxDegGx1xV|¬2VtxDegGx3xV|¬2VtxDegGx
44 c0ex 0V
45 1ex 1V
46 3ex 3V
47 44 45 46 tpss 0xV|¬2VtxDegGx1xV|¬2VtxDegGx3xV|¬2VtxDegGx013xV|¬2VtxDegGx
48 43 47 mpbi 013xV|¬2VtxDegGx