Metamath Proof Explorer


Theorem konigsberglem5

Description: Lemma 5 for konigsberg : The set of vertices of odd degree is greater than 2. (Contributed by Mario Carneiro, 11-Mar-2015) (Revised by AV, 28-Feb-2021)

Ref Expression
Hypotheses konigsberg.v V=03
konigsberg.e E=⟨“01020312122323”⟩
konigsberg.g G=VE
Assertion konigsberglem5 2<xV|¬2VtxDegGx

Proof

Step Hyp Ref Expression
1 konigsberg.v V=03
2 konigsberg.e E=⟨“01020312122323”⟩
3 konigsberg.g G=VE
4 1 2 3 konigsberglem4 013xV|¬2VtxDegGx
5 1 ovexi VV
6 5 rabex xV|¬2VtxDegGxV
7 hashss xV|¬2VtxDegGxV013xV|¬2VtxDegGx013xV|¬2VtxDegGx
8 6 7 mpan 013xV|¬2VtxDegGx013xV|¬2VtxDegGx
9 0ne1 01
10 1re 1
11 1lt3 1<3
12 10 11 ltneii 13
13 3ne0 30
14 9 12 13 3pm3.2i 011330
15 c0ex 0V
16 1ex 1V
17 3ex 3V
18 hashtpg 0V1V3V011330013=3
19 15 16 17 18 mp3an 011330013=3
20 14 19 mpbi 013=3
21 20 breq1i 013xV|¬2VtxDegGx3xV|¬2VtxDegGx
22 df-3 3=2+1
23 22 breq1i 3xV|¬2VtxDegGx2+1xV|¬2VtxDegGx
24 2z 2
25 fzfi 03Fin
26 1 25 eqeltri VFin
27 rabfi VFinxV|¬2VtxDegGxFin
28 hashcl xV|¬2VtxDegGxFinxV|¬2VtxDegGx0
29 26 27 28 mp2b xV|¬2VtxDegGx0
30 29 nn0zi xV|¬2VtxDegGx
31 zltp1le 2xV|¬2VtxDegGx2<xV|¬2VtxDegGx2+1xV|¬2VtxDegGx
32 24 30 31 mp2an 2<xV|¬2VtxDegGx2+1xV|¬2VtxDegGx
33 23 32 sylbb2 3xV|¬2VtxDegGx2<xV|¬2VtxDegGx
34 21 33 sylbi 013xV|¬2VtxDegGx2<xV|¬2VtxDegGx
35 4 8 34 mp2b 2<xV|¬2VtxDegGx