Metamath Proof Explorer


Theorem lcdlkreq2N

Description: Colinear functionals have equal kernels. (Contributed by NM, 28-Mar-2015) (New usage is discouraged.)

Ref Expression
Hypotheses lcdlkreq2.h H=LHypK
lcdlkreq2.u U=DVecHKW
lcdlkreq2.s S=ScalarU
lcdlkreq2.r R=BaseS
lcdlkreq2.o 0˙=0S
lcdlkreq2.l L=LKerU
lcdlkreq2.c C=LCDualKW
lcdlkreq2.v V=BaseC
lcdlkreq2.t ·˙=C
lcdlkreq2.k φKHLWH
lcdlkreq2.a φAR0˙
lcdlkreq2.i φIV
lcdlkreq2.g φG=A·˙I
Assertion lcdlkreq2N φLG=LI

Proof

Step Hyp Ref Expression
1 lcdlkreq2.h H=LHypK
2 lcdlkreq2.u U=DVecHKW
3 lcdlkreq2.s S=ScalarU
4 lcdlkreq2.r R=BaseS
5 lcdlkreq2.o 0˙=0S
6 lcdlkreq2.l L=LKerU
7 lcdlkreq2.c C=LCDualKW
8 lcdlkreq2.v V=BaseC
9 lcdlkreq2.t ·˙=C
10 lcdlkreq2.k φKHLWH
11 lcdlkreq2.a φAR0˙
12 lcdlkreq2.i φIV
13 lcdlkreq2.g φG=A·˙I
14 eqid LFnlU=LFnlU
15 eqid LDualU=LDualU
16 eqid LDualU=LDualU
17 1 2 10 dvhlvec φULVec
18 1 7 8 2 14 10 12 lcdvbaselfl φILFnlU
19 1 2 15 16 7 9 10 lcdvs φ·˙=LDualU
20 19 oveqd φA·˙I=ALDualUI
21 13 20 eqtrd φG=ALDualUI
22 3 4 5 14 6 15 16 17 11 18 21 lkreqN φLG=LI