Description: Lemma for lclkr . The sum has a closed kernel when B is nonzero. (Contributed by NM, 18-Jan-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lclkrlem2m.v | |
|
lclkrlem2m.t | |
||
lclkrlem2m.s | |
||
lclkrlem2m.q | |
||
lclkrlem2m.z | |
||
lclkrlem2m.i | |
||
lclkrlem2m.m | |
||
lclkrlem2m.f | |
||
lclkrlem2m.d | |
||
lclkrlem2m.p | |
||
lclkrlem2m.x | |
||
lclkrlem2m.y | |
||
lclkrlem2m.e | |
||
lclkrlem2m.g | |
||
lclkrlem2n.n | |
||
lclkrlem2n.l | |
||
lclkrlem2o.h | |
||
lclkrlem2o.o | |
||
lclkrlem2o.u | |
||
lclkrlem2o.a | |
||
lclkrlem2o.k | |
||
lclkrlem2q.le | |
||
lclkrlem2q.lg | |
||
lclkrlem2q.b | |
||
lclkrlem2q.n | |
||
lclkrlem2q.bn | |
||
Assertion | lclkrlem2q | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lclkrlem2m.v | |
|
2 | lclkrlem2m.t | |
|
3 | lclkrlem2m.s | |
|
4 | lclkrlem2m.q | |
|
5 | lclkrlem2m.z | |
|
6 | lclkrlem2m.i | |
|
7 | lclkrlem2m.m | |
|
8 | lclkrlem2m.f | |
|
9 | lclkrlem2m.d | |
|
10 | lclkrlem2m.p | |
|
11 | lclkrlem2m.x | |
|
12 | lclkrlem2m.y | |
|
13 | lclkrlem2m.e | |
|
14 | lclkrlem2m.g | |
|
15 | lclkrlem2n.n | |
|
16 | lclkrlem2n.l | |
|
17 | lclkrlem2o.h | |
|
18 | lclkrlem2o.o | |
|
19 | lclkrlem2o.u | |
|
20 | lclkrlem2o.a | |
|
21 | lclkrlem2o.k | |
|
22 | lclkrlem2q.le | |
|
23 | lclkrlem2q.lg | |
|
24 | lclkrlem2q.b | |
|
25 | lclkrlem2q.n | |
|
26 | lclkrlem2q.bn | |
|
27 | eqid | |
|
28 | eqid | |
|
29 | 17 19 21 | dvhlvec | |
30 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 29 24 25 | lclkrlem2m | |
31 | 30 | simpld | |
32 | eldifsn | |
|
33 | 31 26 32 | sylanbrc | |
34 | 30 | simprd | |
35 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 24 25 26 | lclkrlem2o | |
36 | 17 18 19 1 3 5 27 20 15 8 28 16 9 10 21 33 13 14 22 23 34 35 11 12 | lclkrlem2l | |