Metamath Proof Explorer


Theorem lcmineqlem

Description: The least common multiple inequality lemma, a central result for future use. Theorem 3.1 from https://www3.nd.edu/%7eandyp/notes/AKS.pdf (Contributed by metakunt, 16-May-2024)

Ref Expression
Hypotheses lcmineqlem.1 φN
lcmineqlem.2 φ7N
Assertion lcmineqlem φ2Nlcm_1N

Proof

Step Hyp Ref Expression
1 lcmineqlem.1 φN
2 lcmineqlem.2 φ7N
3 7re 7
4 3 a1i φ7
5 1 nnred φN
6 4 5 leloed φ7N7<N7=N
7 1 nnzd φN
8 7nn 7
9 8 nnzi 7
10 zltp1le 7N7<N7+1N
11 9 10 mpan N7<N7+1N
12 7 11 syl φ7<N7+1N
13 7p1e8 7+1=8
14 13 breq1i 7+1N8N
15 12 14 bitrdi φ7<N8N
16 8re 8
17 16 a1i φ8
18 17 5 leloed φ8N8<N8=N
19 1 adantr φ8<NN
20 8p1e9 8+1=9
21 8nn 8
22 21 nnzi 8
23 zltp1le 8N8<N8+1N
24 22 23 mpan N8<N8+1N
25 7 24 syl φ8<N8+1N
26 25 biimpd φ8<N8+1N
27 26 imp φ8<N8+1N
28 20 27 eqbrtrrid φ8<N9N
29 19 28 lcmineqlem23 φ8<N2Nlcm_1N
30 29 ex φ8<N2Nlcm_1N
31 2nn0 20
32 8nn0 80
33 5nn0 50
34 4nn0 40
35 6nn0 60
36 0nn0 00
37 2lt8 2<8
38 5lt10 5<10
39 6lt10 6<10
40 31 32 33 34 35 36 37 38 39 3decltc 256<840
41 5nn 5
42 31 41 decnncl 25
43 42 nnnn0i 250
44 6nn 6
45 43 44 decnncl 256
46 45 nnrei 256
47 4nn 4
48 32 47 decnncl 84
49 48 decnncl2 840
50 49 nnrei 840
51 46 50 ltlei 256<840256840
52 40 51 ax-mp 256840
53 2exp8 28=256
54 oveq2 8=N28=2N
55 53 54 eqtr3id 8=N256=2N
56 lcm8un lcm_18=840
57 oveq2 8=N18=1N
58 57 fveq2d 8=Nlcm_18=lcm_1N
59 56 58 eqtr3id 8=N840=lcm_1N
60 55 59 breq12d 8=N2568402Nlcm_1N
61 52 60 mpbii 8=N2Nlcm_1N
62 61 adantl φ8=N2Nlcm_1N
63 62 ex φ8=N2Nlcm_1N
64 30 63 jaod φ8<N8=N2Nlcm_1N
65 18 64 sylbid φ8N2Nlcm_1N
66 15 65 sylbid φ7<N2Nlcm_1N
67 1nn0 10
68 1lt4 1<4
69 2lt10 2<10
70 8lt10 8<10
71 67 34 31 31 32 36 68 69 70 3decltc 128<420
72 2nn 2
73 67 72 decnncl 12
74 73 nnnn0i 120
75 74 21 decnncl 128
76 75 nnrei 128
77 34 72 decnncl 42
78 77 decnncl2 420
79 78 nnrei 420
80 76 79 ltlei 128<420128420
81 71 80 ax-mp 128420
82 2exp7 27=128
83 oveq2 7=N27=2N
84 82 83 eqtr3id 7=N128=2N
85 lcm7un lcm_17=420
86 oveq2 7=N17=1N
87 86 fveq2d 7=Nlcm_17=lcm_1N
88 85 87 eqtr3id 7=N420=lcm_1N
89 84 88 breq12d 7=N1284202Nlcm_1N
90 81 89 mpbii 7=N2Nlcm_1N
91 90 a1i φ7=N2Nlcm_1N
92 66 91 jaod φ7<N7=N2Nlcm_1N
93 6 92 sylbid φ7N2Nlcm_1N
94 2 93 mpd φ2Nlcm_1N