Metamath Proof Explorer


Theorem lcvp

Description: Covering property of Definition 7.4 of MaedaMaeda p. 31 and its converse. ( cvp analog.) (Contributed by NM, 10-Jan-2015)

Ref Expression
Hypotheses lcvp.s S = LSubSp W
lcvp.p ˙ = LSSum W
lcvp.o 0 ˙ = 0 W
lcvp.a A = LSAtoms W
lcvp.c C = L W
lcvp.w φ W LVec
lcvp.u φ U S
lcvp.q φ Q A
Assertion lcvp φ U Q = 0 ˙ U C U ˙ Q

Proof

Step Hyp Ref Expression
1 lcvp.s S = LSubSp W
2 lcvp.p ˙ = LSSum W
3 lcvp.o 0 ˙ = 0 W
4 lcvp.a A = LSAtoms W
5 lcvp.c C = L W
6 lcvp.w φ W LVec
7 lcvp.u φ U S
8 lcvp.q φ Q A
9 lveclmod W LVec W LMod
10 6 9 syl φ W LMod
11 1 4 10 8 lsatlssel φ Q S
12 1 lssincl W LMod U S Q S U Q S
13 10 7 11 12 syl3anc φ U Q S
14 3 1 4 5 6 13 8 lsatcveq0 φ U Q C Q U Q = 0 ˙
15 1 2 5 10 7 11 lcvexch φ U Q C Q U C U ˙ Q
16 14 15 bitr3d φ U Q = 0 ˙ U C U ˙ Q