Metamath Proof Explorer


Theorem lcvp

Description: Covering property of Definition 7.4 of MaedaMaeda p. 31 and its converse. ( cvp analog.) (Contributed by NM, 10-Jan-2015)

Ref Expression
Hypotheses lcvp.s S=LSubSpW
lcvp.p ˙=LSSumW
lcvp.o 0˙=0W
lcvp.a A=LSAtomsW
lcvp.c C=LW
lcvp.w φWLVec
lcvp.u φUS
lcvp.q φQA
Assertion lcvp φUQ=0˙UCU˙Q

Proof

Step Hyp Ref Expression
1 lcvp.s S=LSubSpW
2 lcvp.p ˙=LSSumW
3 lcvp.o 0˙=0W
4 lcvp.a A=LSAtomsW
5 lcvp.c C=LW
6 lcvp.w φWLVec
7 lcvp.u φUS
8 lcvp.q φQA
9 lveclmod WLVecWLMod
10 6 9 syl φWLMod
11 1 4 10 8 lsatlssel φQS
12 1 lssincl WLModUSQSUQS
13 10 7 11 12 syl3anc φUQS
14 3 1 4 5 6 13 8 lsatcveq0 φUQCQUQ=0˙
15 1 2 5 10 7 11 lcvexch φUQCQUCU˙Q
16 14 15 bitr3d φUQ=0˙UCU˙Q