Metamath Proof Explorer


Theorem ldilco

Description: The composition of two lattice automorphisms is a lattice automorphism. (Contributed by NM, 19-Apr-2013)

Ref Expression
Hypotheses ldilco.h H = LHyp K
ldilco.d D = LDil K W
Assertion ldilco K V W H F D G D F G D

Proof

Step Hyp Ref Expression
1 ldilco.h H = LHyp K
2 ldilco.d D = LDil K W
3 simp1l K V W H F D G D K V
4 eqid LAut K = LAut K
5 1 4 2 ldillaut K V W H F D F LAut K
6 5 3adant3 K V W H F D G D F LAut K
7 1 4 2 ldillaut K V W H G D G LAut K
8 7 3adant2 K V W H F D G D G LAut K
9 4 lautco K V F LAut K G LAut K F G LAut K
10 3 6 8 9 syl3anc K V W H F D G D F G LAut K
11 simp11 K V W H F D G D x Base K x K W K V W H
12 simp13 K V W H F D G D x Base K x K W G D
13 eqid Base K = Base K
14 13 1 2 ldil1o K V W H G D G : Base K 1-1 onto Base K
15 11 12 14 syl2anc K V W H F D G D x Base K x K W G : Base K 1-1 onto Base K
16 f1of G : Base K 1-1 onto Base K G : Base K Base K
17 15 16 syl K V W H F D G D x Base K x K W G : Base K Base K
18 simp2 K V W H F D G D x Base K x K W x Base K
19 fvco3 G : Base K Base K x Base K F G x = F G x
20 17 18 19 syl2anc K V W H F D G D x Base K x K W F G x = F G x
21 simp3 K V W H F D G D x Base K x K W x K W
22 eqid K = K
23 13 22 1 2 ldilval K V W H G D x Base K x K W G x = x
24 11 12 18 21 23 syl112anc K V W H F D G D x Base K x K W G x = x
25 24 fveq2d K V W H F D G D x Base K x K W F G x = F x
26 simp12 K V W H F D G D x Base K x K W F D
27 13 22 1 2 ldilval K V W H F D x Base K x K W F x = x
28 11 26 18 21 27 syl112anc K V W H F D G D x Base K x K W F x = x
29 20 25 28 3eqtrd K V W H F D G D x Base K x K W F G x = x
30 29 3exp K V W H F D G D x Base K x K W F G x = x
31 30 ralrimiv K V W H F D G D x Base K x K W F G x = x
32 13 22 1 4 2 isldil K V W H F G D F G LAut K x Base K x K W F G x = x
33 32 3ad2ant1 K V W H F D G D F G D F G LAut K x Base K x K W F G x = x
34 10 31 33 mpbir2and K V W H F D G D F G D