Step |
Hyp |
Ref |
Expression |
1 |
|
ldilco.h |
|
2 |
|
ldilco.d |
|
3 |
|
simp1l |
|
4 |
|
eqid |
|
5 |
1 4 2
|
ldillaut |
|
6 |
5
|
3adant3 |
|
7 |
1 4 2
|
ldillaut |
|
8 |
7
|
3adant2 |
|
9 |
4
|
lautco |
|
10 |
3 6 8 9
|
syl3anc |
|
11 |
|
simp11 |
|
12 |
|
simp13 |
|
13 |
|
eqid |
|
14 |
13 1 2
|
ldil1o |
|
15 |
11 12 14
|
syl2anc |
|
16 |
|
f1of |
|
17 |
15 16
|
syl |
|
18 |
|
simp2 |
|
19 |
|
fvco3 |
|
20 |
17 18 19
|
syl2anc |
|
21 |
|
simp3 |
|
22 |
|
eqid |
|
23 |
13 22 1 2
|
ldilval |
|
24 |
11 12 18 21 23
|
syl112anc |
|
25 |
24
|
fveq2d |
|
26 |
|
simp12 |
|
27 |
13 22 1 2
|
ldilval |
|
28 |
11 26 18 21 27
|
syl112anc |
|
29 |
20 25 28
|
3eqtrd |
|
30 |
29
|
3exp |
|
31 |
30
|
ralrimiv |
|
32 |
13 22 1 4 2
|
isldil |
|
33 |
32
|
3ad2ant1 |
|
34 |
10 31 33
|
mpbir2and |
|