| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ldilco.h |  | 
						
							| 2 |  | ldilco.d |  | 
						
							| 3 |  | simp1l |  | 
						
							| 4 |  | eqid |  | 
						
							| 5 | 1 4 2 | ldillaut |  | 
						
							| 6 | 5 | 3adant3 |  | 
						
							| 7 | 1 4 2 | ldillaut |  | 
						
							| 8 | 7 | 3adant2 |  | 
						
							| 9 | 4 | lautco |  | 
						
							| 10 | 3 6 8 9 | syl3anc |  | 
						
							| 11 |  | simp11 |  | 
						
							| 12 |  | simp13 |  | 
						
							| 13 |  | eqid |  | 
						
							| 14 | 13 1 2 | ldil1o |  | 
						
							| 15 | 11 12 14 | syl2anc |  | 
						
							| 16 |  | f1of |  | 
						
							| 17 | 15 16 | syl |  | 
						
							| 18 |  | simp2 |  | 
						
							| 19 |  | fvco3 |  | 
						
							| 20 | 17 18 19 | syl2anc |  | 
						
							| 21 |  | simp3 |  | 
						
							| 22 |  | eqid |  | 
						
							| 23 | 13 22 1 2 | ldilval |  | 
						
							| 24 | 11 12 18 21 23 | syl112anc |  | 
						
							| 25 | 24 | fveq2d |  | 
						
							| 26 |  | simp12 |  | 
						
							| 27 | 13 22 1 2 | ldilval |  | 
						
							| 28 | 11 26 18 21 27 | syl112anc |  | 
						
							| 29 | 20 25 28 | 3eqtrd |  | 
						
							| 30 | 29 | 3exp |  | 
						
							| 31 | 30 | ralrimiv |  | 
						
							| 32 | 13 22 1 4 2 | isldil |  | 
						
							| 33 | 32 | 3ad2ant1 |  | 
						
							| 34 | 10 31 33 | mpbir2and |  |